Skip to main content
Log in

Non-binary entanglement-assisted stabilizer codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using pre-shared entangled states between the encoder and the decoder, we provide a previously unreported coding-theoretic framework for constructing entanglement-assisted stabilizer codes over qudits of dimension \(p^k\) from first principles, where p is prime and \(k \in {\mathbb {Z}}^+\). We introduce the concept of mathematically decomposing a qudit of dimension \(p^k\) into k subqudits, each of dimension p. Our contributions toward the entanglement-assisted stabilizer coding framework over qudits are multi-fold as follows: (a) We study the properties of the code and derive an analytical expression for the minimum number of pre-shared entangled subqudits required to construct the code. (b) We provide a code construction procedure that involves obtaining the explicit form of the stabilizers of the code. (c) We show that the proposed entanglement-assisted qudit stabilizer codes are analogous to classical additive codes over \({\mathbb {F}}_{p^k}\). (d) We provide the quantum coding bounds, such as the quantum Hamming bound, the quantum Singleton bound, and the quantum Gilbert–Varshamov bound for non-degenerate entanglement-assisted stabilizer codes over qudits. (e) We finally demonstrate that the error correction capability of the code can be increased with entanglement assistance. The proposed framework is useful for realizing coded quantum computing and communication systems over \(p^k\)-dimensional qudits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We note that stabilizer codes are analogous to classical additive codes. Classical additive codes are more generalized compared to classical linear codes.

  2. We note that the quantum Hamming bound \(\sum \nolimits _{ i=0}^{\lfloor \frac{d-1}{2}\rfloor }\left( {\begin{array}{c}n\\ i\end{array}}\right) 3^i \le 2^{n-m+c_e}\) for an \([[n,m,d';c_e]]\) qubit stabilizer code [30], i.e., \(((n,2^m,d';c_e))\) code, is obtained by substituting \(q=p=2\), \(k=1\), \(n_e'=c_e\), and \(K=2^m\) (as K is the code dimension) in the bound provided in Theorem 9. We note that the rest of the bounds for other special cases can be obtained similarly.

References

  1. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87(2), 307–346 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Shor, P.W.: Scheme for Reducing Decoherence in Quantum Computer Memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. dissertation, CalTech (1997)

  6. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87(2), 307–346 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Raina, A., Nadkarni, P.J., Garani, S.S.: Recovery of quantum information from a node failure in a graph. Quant. Inf. Process. 19, 70 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nadkarni, P.J., Raina, A., Garani, S.S.: Modified graph-state codes for single-node recovery in quantum distributed storage. Phys. Rev. A. 102, 062430 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Lai, C.-Y., Brun, T.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88(1), 012320 (2013)

    Article  ADS  Google Scholar 

  11. Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119(187702) (2017)

  12. Imany, P., Jaramillo-Villegas, J.A., Alshaykh, M.S., Lukens, J.M., Odele, O.D., Moore, A.J., Leaird, D.E., Qi, M., Weiner, A.M.: High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5(59) (2019). https://doi.org/10.1038/s41534-019-0173-8

  13. Gedik, Z., Silva, I.A., Çakmak, B., Karpat, G., Vidoto, E.L.G., Soares-Pinto, D.O., deAzevedo, E.R., Fanchini, F.F.: Computational speed-up with a single qudit. Sci. Rep. 5(14671) (2015). https://doi.org/10.1038/srep14671

  14. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  15. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  16. Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall, USA (2004)

    MATH  Google Scholar 

  17. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, 2nd edn. North-holland Publishing Company (1978)

  18. Artin, M.: Algebra. 2nd ed. London: Pearson Ed. (2015)

  19. Riguang, L., Zhi, M.: Non-binary Entanglement-assisted Stabilizer Quantum Codes. arXiv:1105.5872

  20. Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary Entanglement-assisted Quantum Stabilizer Codes. Sci. China Inf. Sci. 60(4) (2016)

  21. Shao, J., Zhou, L., Sun, Y.: Entanglement-assisted Nonbinary Quantum LDPC Codes with Finite Field Method. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 99–103 (2018). https://doi.org/10.1109/ICIEA.2018.8397697

  22. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  23. Hurley, T., Hurley, D., Hurley, B.: Entanglement-assisted Quantum Error-correcting Codes from Units. arXiv:1806.10875 (2018)

  24. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant. Inf. Processing 18(4) (2019)

  25. Grassl, M., Roetteler, M., Beth, T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003)

    Article  MathSciNet  Google Scholar 

  26. Wilde, M.M.: Quantum Coding with Entanglement. Ph.D. dissertation, Univ. of South. Cal. (2008)

  27. Hsieh, M., Brun, T., Devetak, I.: Entanglement-assisted Quantum Quasicyclic Low-density Parity-check Codes. Phys. Rev. A 79 (3) (2009)

  28. Nadkarni, P.J., Garani, S.S.: Entanglement assisted binary quantum tensor product codes. Inf. Th. Workshop, Kaohsiung, Taiwan (2017)

  29. Nadkarni, P.J., Garani, S.S.: Encoding of Quantum Stabilizer Codes over Qudits with \(d=p^k\). Quantum Communication and Information Technology Workshop, IEEE GLOBECOM, Abu Dhabi (2018)

  30. Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  Google Scholar 

  31. Nadkarni, P.J., Garani, S.S.: Entanglement assisted quantum reed-solomon codes. In: Information Theory and Applications Workshop, San Diego, USA (2019)

  32. Nadkarni, P.J., Garani, S.S.: Entanglement-assisted Reed–Solomon codes over qudits: theory and architecture. Quant. Inf. Process. 20(4), 129 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Nadkarni, P. J., Garani, S. S.: Coding analog of superadditivity using entanglement-assisted quantum tensor product codes over \({\mathbb{F}}_{p^k}\). IEEE Trans. Quant. Eng. 1(2101417), 1–17 (2020). https://doi.org/10.1109/TQE.2020.3027035

  34. Nadkarni, P.J., Garani, S.S.: Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes. IEEE Trans. Quant. Eng. 2, 2100322 (2021). https://doi.org/10.1109/TQE.2021.3050848

    Article  Google Scholar 

  35. Nadkarni, P.J., Garani, S.S.: Quantum error correction architecture for Qudit stabilizer codes. Phys. Rev. A. 103, 042420 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  36. Supplementary Material

  37. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd edn. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  38. Strang, G.: Linear Algebra and its Applications, 4th ed. Cengage, Boston, MA (2006)

  39. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. Grassl, M.: Entanglement-assisted quantum communication beating the quantum singleton bound. Phys. Rev. A. 103(2), L020601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  41. Farinholt, J.M.: An ideal characterization of the Clifford Operators. J. Phys. A: Math. Theor. 47(30) (2014)

  42. Niehage, A., Gottesman, D.: Quantum error correction/co639. https://www.perimeterinstitute.ca/personal/dgottesman/CO639-2004/Lecture8.pdf (2004)

Download references

Acknowledgements

The PhD work of P. J. Nadkarni is funded by a fellowship from the Ministry of Electronics & Information Technology (MeitY), Government of India. S. S. Garani acknowledges the Ministry of Human Resource and Development (MHRD), Government of India, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayan Srinivasa Garani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 746 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadkarni, P.J., Garani, S.S. Non-binary entanglement-assisted stabilizer codes. Quantum Inf Process 20, 256 (2021). https://doi.org/10.1007/s11128-021-03174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03174-1

Keywords

Navigation