Skip to main content
Log in

Optimal quantum state transformations based on machine learning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is well known that quantum algorithms may solve problems efficiently that are intractable using conventional algorithms. Quantum algorithms can be designed with a set of universal quantum gates that transform input states into desired output states. However, designing quantum algorithms that transform states in desired ways is challenging due to its complexity. In this paper, we propose a machine learning framework for the transformation of unknown states into their corresponding target states. Specifically, a parameterized quantum circuit learns a given task by tuning its parameters. After the learning is done, the circuit is competent for the quantum task. This allows us to circumvent cumbersome circuit design based on universal quantum gates. If perfect transformation is forbidden by quantum theory, an optimal transformation can be obtained in terms of fidelity. This provides a research method to study various quantum no-go theorems that characterize the intrinsic gap between quantum and classical information. As examples, quantum state rotation and quantum state cloning are studied using numerical simulations. We also show the good robustness of our machine learning framework to corrupted training data, which is a very nice property for physical implementation on near-term noisy intermediate-scale quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang I.L.: Quantum Computation and Quantum Information, p. 9781107002173 . Cambridge University Press, I.L. (2011)

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of Twenty-eighth ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding an N -bit Boolean function for a classification. New J. Phys. 16, 103014 (2014)

    Article  ADS  MATH  Google Scholar 

  6. Gisin, N., Popescu, S.: Spin flips and quantum information for antiparallel spins. Phys. Rev. Lett. 83, 432 (1999)

    Article  ADS  Google Scholar 

  7. Bužek, V., Hillery, M.: Optimal manipulations with qubits: Universal quantum entanglers. Phys. Rev. A 62, 022303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  10. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  11. Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements. Phys. Rev. A 99, 012324 (2019)

    Article  ADS  Google Scholar 

  12. Li, M.-S., Wang, Y.-L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98, 062306 (2018)

    Article  ADS  Google Scholar 

  13. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  MATH  Google Scholar 

  14. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  15. Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  ADS  Google Scholar 

  16. Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creating a superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)

    Article  ADS  Google Scholar 

  17. Modi, K., Pati, A.K., de Sen, A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120, 230501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13, 431 (2017)

    Article  Google Scholar 

  19. Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122, 200401 (2019)

    Article  ADS  Google Scholar 

  20. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019)

    Article  ADS  Google Scholar 

  21. Gammelmark, S., Mølmer, K.: Quantum learning by measurement and feedback. New J. Phys. 11, 033017 (2009)

    Article  ADS  Google Scholar 

  22. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012)

    Article  ADS  Google Scholar 

  23. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  24. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  26. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)

    Article  ADS  Google Scholar 

  27. Bukov, M., Day, A.G.R., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8, 031086 (2018)

    Google Scholar 

  28. Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)

    Article  ADS  Google Scholar 

  29. Cao, S.-X., Wossnig, L., Vlastakis, B., Leek, P., Grant, E.: Cost-function embedding and dataset encoding for machine learning with parametrized quantum circuits. Phys. Rev. A 101, 052309 (2020)

    Article  ADS  Google Scholar 

  30. Cincio, L., Subaşi, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018)

    Article  ADS  Google Scholar 

  31. Lin, J., Lai, Z.-Y., Li, X.-P.: Quantum adiabatic algorithm design using reinforcement learning. Phys. Rev. A 101, 052327 (2020)

    Article  ADS  Google Scholar 

  32. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019)

    Article  ADS  Google Scholar 

  33. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)

    Article  ADS  Google Scholar 

  34. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018)

    Article  ADS  Google Scholar 

  35. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019)

    Article  ADS  Google Scholar 

  36. Dallaire-Demers, P.-L., Romero, J., Veis, L., Sim, S., Aspuru-Guzik, A.: Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer. Quantum Sci. Technol. 4, 045005 (2019)

    Article  ADS  Google Scholar 

  37. Nakanishi, K.M., Fujii, K., Todo, S.: Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2, 043158 (2020)

    Article  Google Scholar 

  38. Li, J., Yang, X.-D., Peng, X.-H., Sun, C.-P.: Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett. 118, 150503 (2017)

    Article  ADS  Google Scholar 

  39. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  40. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179. (1984)

  41. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  42. Fan, H., Wang, Y.N., Jing, L., Yue, J.D., Shi, H.D., Zhang, Y.L., Mu, L.Z.: Quantum cloning machines and the applications. Phys. Rep. 544, 241 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Huttner, N.G.: Quantum cloning, eavesdropping and bell’s inequality. Phys. Lett. A 228, 13 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Bartkiewicz, K., Lemr, K., Cernoch, A., Soubusta, J., Miranowicz, A.: Experimental eavesdropping based on optimal quantum cloning. Phys. Rev. Lett. 110, 173601 (2013)

    Article  ADS  Google Scholar 

  45. Niu, C.S., Griffiths, R.B.: Optimal copying of one quantum bit. Phys. Rev. A 58, 4377 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett. 84, 4497 (2000)

    Article  ADS  Google Scholar 

  47. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v5. (2014)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (under Grant No. 12074107), Natural Science Foundation of Hubei Province of China (under Grant No. 2020CFB263), and the program for outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province (under Grant No. T2020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We here give a derivation of the probabilities of measurement in Eqs. (12) and (15).

For QSR, the quantum circuit is shown in Fig. 4. Suppose that an input state \(|\psi _\mathrm{in}^i\rangle \) and the corresponding teaching state \(|\psi _{t}^i\rangle \) are fed into the quantum circuit. The \(|\psi _\mathrm{in}^i\rangle \) is sent through the learning circuit to give

$$\begin{aligned} |\psi _\mathrm{out}^i \rangle = U(\vec {\theta })|\psi _\mathrm{in}^i\rangle . \end{aligned}$$
(22)

The state before evaluation by the teaching circuit is

$$\begin{aligned} |\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle |0\rangle . \end{aligned}$$
(23)

The first Hadamard gate on the last qubit gives us

$$\begin{aligned} \frac{1}{\sqrt{2}}\left( |\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle |0\rangle +|\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle |1\rangle \right) . \end{aligned}$$
(24)

Then, a controlled-SWAP gate is applied, which gives

$$\begin{aligned} \frac{1}{\sqrt{2}}\left( |\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle |0\rangle +|\psi _{t}^i \rangle |\psi _\mathrm{out}^i\rangle |1\rangle \right) . \end{aligned}$$
(25)

Next, a Hadamard gate is applied again on the last qubit, giving

$$\begin{aligned} |\Psi \rangle =\frac{1}{2} \left[ \left( |\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle +|\psi _{t}^i \rangle |\psi _\mathrm{out}^i\rangle \right) |0\rangle +\left( |\psi _\mathrm{out}^i \rangle |\psi _{t}^i\rangle -|\psi _{t}^i \rangle |\psi _\mathrm{out}^i\rangle \right) |1\rangle \right] .\qquad \end{aligned}$$
(26)

Finally, by measuring the last qubit, we obtain a result of 0 with probability

$$\begin{aligned} \begin{aligned} p_{0}^i =&\langle \Psi |(I\otimes I \otimes |0\rangle \langle 0|)|\Psi \rangle \\ =&\frac{1+{\mathcal {F}}^i}{2}. \end{aligned} \end{aligned}$$
(27)

Similarly, we obtain a result of 1 with probability

$$\begin{aligned} p_{1}^i =\frac{1-{\mathcal {F}}^i}{2}. \end{aligned}$$
(28)

For \(1-2\) QSC, the quantum circuit is shown in Fig. 6. Suppose that an input state \(|\psi _\mathrm{in}^i\rangle \) and the corresponding teaching state \(|\psi _{t}^i\rangle =|\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle \) are fed into the quantum circuit. The \(|\psi _\mathrm{in}^i\rangle \) together with auxiliary qubits are sent through the learning circuit to give

$$\begin{aligned} |\psi _\mathrm{out}^i\rangle = U(\vec {\theta })|\psi _\mathrm{in}^i\rangle |0\rangle |0\rangle . \end{aligned}$$
(29)

Suppose that \(|\psi _\mathrm{out}^i\rangle =\sum _{l,m,n=0}^{1} \alpha _{lmn}^{i}|l\rangle |m\rangle |n\rangle \). The state before evaluation by the teaching circuit is

$$\begin{aligned} \sum _{l,m,n=0}^{1} \alpha _{lmn}^{i}|l\rangle |m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |0\rangle |0\rangle . \end{aligned}$$
(30)

The first two Hadamard gates on the last two qubits give us

$$\begin{aligned} \frac{1}{2}\sum _{l,m,n=0}^1\alpha _{lmn}^{i}|l\rangle |m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle (|0\rangle |0\rangle +|0\rangle |1\rangle +|1\rangle |0\rangle +|1\rangle |1\rangle ). \end{aligned}$$
(31)

Then, two controlled-SWAP gates are applied, which gives

$$\begin{aligned}&\frac{1}{2}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |0\rangle |0\rangle +\frac{1}{2}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle |0\rangle |1\rangle \nonumber \\ +&\frac{1}{2}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle |1\rangle |0\rangle +\frac{1}{2}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle |1\rangle |1\rangle . \end{aligned}$$
(32)

Next, two Hadamard gates are applied again on the last two qubits, giving

$$\begin{aligned}&\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle (|0\rangle |0\rangle +|0\rangle |1\rangle +|1\rangle |0\rangle +|1\rangle |1\rangle )\nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle (|0\rangle |0\rangle -|0\rangle |1\rangle +|1\rangle |0\rangle -|1\rangle |1\rangle )\nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle (|0\rangle |0\rangle +|0\rangle |1\rangle -|1\rangle |0\rangle -|1\rangle |1\rangle )\nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle (|0\rangle |0\rangle -|0\rangle |1\rangle -|1\rangle |0\rangle +|1\rangle |1\rangle ). \end{aligned}$$
(33)

It can be rewritten as

$$\begin{aligned}&\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle \Big (|m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle +|m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle +|\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle \nonumber \\&+|\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle \Big )|0\rangle |0\rangle \nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle \Big (|m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle -|m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle +|\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle \nonumber \\&-|\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle \Big )|0\rangle |1\rangle \nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle \Big (|m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle +|m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle -|\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle \nonumber \\&-|\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle \Big )|1\rangle |0\rangle \nonumber \\&+\frac{1}{4}\sum _{l,m,n}\alpha _{lmn}^{i}|l\rangle \Big (|m\rangle |n\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle -|m\rangle |\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |n\rangle -|\psi _\mathrm{in}^i\rangle |n\rangle |m\rangle |\psi _\mathrm{in}^i\rangle \nonumber \\&+|\psi _\mathrm{in}^i\rangle |\psi _\mathrm{in}^i\rangle |m\rangle |n\rangle \Big )|1\rangle |1\rangle . \end{aligned}$$
(34)

Thus, by measuring the last two qubits, we obtain a result of 00 with probability

$$\begin{aligned} p^{i}_{00}=&\frac{1}{4}\Big [1+\sum _{l,m,n,n'}\alpha _{lmn}^{i}\alpha _{lmn'}^{*i}\Big \langle \psi _\mathrm{in}^i|n\Big \rangle \Big \langle n'|\psi _\mathrm{in}^i\Big \rangle +\sum _{l,m,m',n}\alpha _{lmn}^{i}\alpha _{lm'n}^{*i}\Big \langle \psi _\mathrm{in}^i|m\Big \rangle \Big \langle m'|\psi _\mathrm{in}^i\Big \rangle \nonumber \\&+\sum _{l,m,m',n,n'}\alpha _{lmn}^{i}\alpha _{lm'n'}^{*i}\Big \langle \psi _\mathrm{in}^i|m\Big \rangle \Big \langle \psi _\mathrm{in}^i|n\Big \rangle \Big \langle m'|\psi _\mathrm{in}^i\Big \rangle \Big \langle n'|\psi _\mathrm{in}^i\Big \rangle \Big ]. \end{aligned}$$
(35)

Notice that \(\sum _{l,m,m',n}\alpha _{lmn}^{i}\alpha _{lm'n}^{*i}|m\rangle \langle m'|\) is the reduced density matrix of copy one, denoted as \(\rho _1\), \(\sum _{l,m,n,n'}\alpha _{lmn}^{i}\alpha _{lmn'}^{*i}|n\rangle \langle n'|\) is the reduced density matrix of copy two, denoted as \(\rho _2\). \(\sum _{l,m,m',n,n'}\alpha _{lmn}^{i}\alpha _{lm'n'}^{*i}|m\rangle |n\rangle \langle m'|\langle n'| \) is the reduced density matrix of copy one and two, denoted as \(\rho _{12}\). Then, \(p^{i}_{00}\) can be written as

$$\begin{aligned} p^{i}_{00}&=\frac{1}{4}\left( 1+\left\langle \psi _{in}^i|\rho _1|\psi _{in}^i\right\rangle +\left\langle \psi _{in}^i|\rho _2|\psi _{in}^i\right\rangle +\left\langle \psi _{in}^i\left|^{\otimes 2}\rho _{12}\right|\psi _{in}^i\right\rangle ^{\otimes 2}\right) \nonumber \\&=\frac{1}{4}\left( 1+{\mathcal {F}}^{i}_{1}+{\mathcal {F}}^{i}_{2}+{\mathcal {F}}^{i}_{12}\right) . \end{aligned}$$
(36)

Similarly, we can obtain

$$\begin{aligned} p^{i}_{01}&=\frac{1}{4}\left( 1+{\mathcal {F}}^{i}_{1}-{\mathcal {F}}^{i}_{2}-{\mathcal {F}}^{i}_{12}\right) ,\nonumber \\ p^{i}_{10}&=\frac{1}{4}\left( 1-{\mathcal {F}}^{i}_{1}+{\mathcal {F}}^{i}_{2}-{\mathcal {F}}^{i}_{12}\right) ,\nonumber \\ p^{i}_{11}&=\frac{1}{4}\left( 1-{\mathcal {F}}^{i}_{1}-{\mathcal {F}}^{i}_{2}+{\mathcal {F}}^{i}_{12}\right) . \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, TH., Wang, MH. & Zhou, B. Optimal quantum state transformations based on machine learning. Quantum Inf Process 20, 212 (2021). https://doi.org/10.1007/s11128-021-03148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03148-3

Keywords

Navigation