Skip to main content
Log in

Quantum teleportation by utilizing helical spin chains for sharing entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We develop a new protocol for sharing entanglement (one ebit) between two parties using the natural dynamics of helical multiferroic spin chains. We introduce a novel kicking scheme of the electric field for enhancing the teleportation fidelity in our protocol that works in the presence of an appropriate choice of parameters. We also investigate the effect of a common spin environment causing decoherence in the entanglement sharing channel. We compare the results to that of XXZ and XX models subject to a similar entanglement sharing protocol and find that the helical multiferroic chain with the kicking scheme provides a better singlet fraction. We show that the kicking scheme in conjugation with the optimized parameters enhances the fidelity of teleportation even in the presence of impurities and/or decoherence. The advantage of the kicking scheme shown in the impurity cases is an important result to be useful in a realizable setup of helical multiferroic spin chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)

    Article  ADS  Google Scholar 

  3. Wilde, M.M.: Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels. Phys. Rev. A 97(6), 062305 (2018)

    Article  ADS  Google Scholar 

  4. Liuzzo-Scorpo, P., et al.: Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119(12), 120503 (2017)

    Article  ADS  Google Scholar 

  5. Cavalcanti, D., Skrzypczyk, P., Šupi, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119(11), 110501 (2017)

    Article  ADS  Google Scholar 

  6. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96(2), 022315 (2017)

    Article  ADS  Google Scholar 

  7. Greplova, E., Mølmer, K., Andersen, C.K.: Quantum teleportation with continuous measurements. Phys. Rev. A 94(4), 042334 (2016)

    Article  ADS  Google Scholar 

  8. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93(6), 062330 (2016)

    Article  ADS  Google Scholar 

  9. Campos Venuti, L., Degli Esposti Boschi, C., Roncaglia, M.: Qubit teleportation and transfer across antiferromagnetic spin chains. Phys. Rev. Lett. 99(6), 060401 (2007)

    Article  ADS  Google Scholar 

  10. Campos Venuti, L., Degli Esposti Boschi, C., Roncaglia, M.: Long-distance entanglement in spin systems. Phys. Rev. Lett. 96(24), 247206 (2006)

    Article  ADS  Google Scholar 

  11. Campos Venuti, L., et al.: Long-distance entanglement and quantum teleportation in \(XX\) spin chains. Phys. Rev. A 76(5), 052328 (2007)

    Article  ADS  Google Scholar 

  12. Pirandola, S., et al.: Theory of channel simulation and bounds for private communication. Quantum Sci. Technol. 3, 035009 (2018)

    Article  ADS  Google Scholar 

  13. Pirandola, S., Laurenza, R., Braunstein, S.L.: Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence. Eur. Phys. J. D 72, 162 (2018)

    Article  ADS  Google Scholar 

  14. Albanese, C., et al.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93(23), 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Christandl, M., et al.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71(3), 032312 (2005)

    Article  ADS  Google Scholar 

  16. Boness, T., Bose, S., Monteiro, S.: Entanglement and dynamics of spin chains in periodically pulsed magnetic fields: accelerator modes. Phys. Rev. Lett. 96(18), 187201 (2006)

    Article  ADS  Google Scholar 

  17. Banchi, L., et al.: Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems. Phys. Rev. A 82(5), 052321 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Apollaro, T.J.G., et al.: Fidelity ballistic quantum-state transfer through long uniform channels. Phys. Rev. A 85(5), 052319 (2012)

    Article  ADS  Google Scholar 

  19. Apollaro, T.J.G., et al.: Spin chains for two-qubit teleportation. Phys. Rev. A 100(5), 052308 (2019)

    Article  ADS  Google Scholar 

  20. Zueco, D., et al.: Quantum router based on ac control of qubit chains. Phys. Rev. A 80(4), 042303 (2009)

    Article  ADS  Google Scholar 

  21. Bayat, A., Bose, S., Sodano, P.: Entanglement routers using macroscopic singlets. Phys. Rev. Lett. 105(18), 187204 (2010)

    Article  ADS  Google Scholar 

  22. Bayat, A., Bose, S.: Information-transferring ability of the different phases of a finite XXZ spin chain. Phys. Rev. A 81(1), 012304 (2010)

    Article  ADS  Google Scholar 

  23. Paganelli, S., et al.: Routing quantum information in spin chains. Phys. Rev. A 87(6), 062309 (2013)

    Article  ADS  Google Scholar 

  24. Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)

    Article  ADS  Google Scholar 

  25. Menzel, M., et al.: Information transfer by vector spin chirality in finite magnetic chains. Phys. Rev. Lett. 108(19), 197204 (2012)

    Article  ADS  Google Scholar 

  26. Park, S., et al.: Ferroelectricity in an \(S=1/2\) chain Cuprat. Phys. Rev. Lett. 98(5), 057601 (2007)

    Article  ADS  Google Scholar 

  27. Mostovoy, M.: Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96(6), 067601 (2006)

    Article  ADS  Google Scholar 

  28. Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95(5), 057205 (2005)

    Article  ADS  Google Scholar 

  29. Chotorlishvili, L., et al.: Superadiabatic quantum heat engine with a multiferroic working medium. Phys. Rev. E 94(3), 032116 (2016)

    Article  ADS  Google Scholar 

  30. Azimi, M., et al.: Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain. Phys. Rev. B 94(6), 064423 (2016)

    Article  ADS  Google Scholar 

  31. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 749 (2006)

    Article  ADS  Google Scholar 

  32. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  33. Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  34. Azimi, M., et al.: Helical multiferroics for electric field controlled quantum information processing. Phys. Rev. B 89(2), 024424 (2014)

    Article  ADS  Google Scholar 

  35. Verma, H., et al.: Qubit(s) transfer in helical spin chains. EPL 119(3), 30001 (2017)

    Article  ADS  Google Scholar 

  36. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66(5), 052318 (2002)

    Article  ADS  Google Scholar 

  37. Badziag, P., et al.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62(1), 012311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65(2), 022302 (2002)

    Article  ADS  Google Scholar 

  39. Yeo, Y., et al.: Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field. J. Phys. A: Math. Gen. 38, 3235–3243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yeo, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78(2), 022334 (2008)

    Article  ADS  Google Scholar 

  41. Yeo, Y., Kho, Z.-W., Wang, L.: Effects of Pauli channels and noisy quantum operations on standard teleportation. EPL (Europhys. Lett.) 86, 40009 (2009)

    Article  ADS  Google Scholar 

  42. Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63(3), 034301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  43. Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72(5), 052113 (2005)

    Article  ADS  Google Scholar 

  44. Cai, J.-M., Zhou, Z.-W., Guo, G.-C.: Decoherence effects on the quantum spin channels. Phys. Rev. A 74(2), 022328 (2006)

    Article  ADS  Google Scholar 

  45. Schrettle, F., et al.: Switching the ferroelectric polarization in the \(\text{ S }=1-2\) chain cuprate \(\text{ LiCuVO}_{4}\) by external magnetic fields. Phys. Rev. B 77(14), 144101 (2008)

    Article  ADS  Google Scholar 

  46. Moskalenko, A.S., Zhu, Z.-G., Berakdar, J.: Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective. Phys. Rep. 672, 1–82 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60(3), 1888–1898 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Li, G., Ye, M.-Y., Lin, X.-M.: Entanglement fidelity of the standard quantum teleportation channel. Phys. Lett. A 377(23), 1531–1533 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Giampaolo, S.M., Illuminati, F.: Long-distance entanglement and quantum teleportation in coupled-cavity arrays. Phys. Rev. A 80(5), 050301 (2009)

    Article  ADS  Google Scholar 

  50. Zajac, D.M., et al.: Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

SKM acknowledges the Department of Science and Technology, India for support grant under the INSPIRE Faculty Fellowship award (IFA-12 PH 22). JB and LC acknowledge the financial support of the DFG through SFB762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshit Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, H., Chotorlishvili, L., Berakdar, J. et al. Quantum teleportation by utilizing helical spin chains for sharing entanglement. Quantum Inf Process 20, 54 (2021). https://doi.org/10.1007/s11128-020-02971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02971-4

Keywords

Navigation