Skip to main content
Log in

Influence of Magnetic Field on Qutrit Teleportation under Intrinsic Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study qutrit teleportation through a qutrit xyz chain, in the presence of intrinsic decoherence and a non-homogeneous magnetic field. We study the effects of intrinsic phase change, magnetic field and entanglement of the initial state of the channel. It is observed that while the intrinsic phase change and the non-homogeneity of the magnetic field have adverse effects on the teleportation fidelity, the entanglement of the initial state of the channeled enhances the latter. Moreover, the intrinsic decoherence may remove the ripples from the time curve that is delivered by the Schrödinger channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Divincenzo, D.P.: Quantuminformation and computation. Nature. 404, 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  3. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  4. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics. 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  5. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A. 57, 120 (1998)

    Article  ADS  Google Scholar 

  6. Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B. 59, 2070 (1999)

    Article  ADS  Google Scholar 

  7. Mattis, D.C.: The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods. World Scientific, Singapore (2006)

    Book  Google Scholar 

  8. Chen, S., Wang, L., Gu, S.-J., Wang, Y.: Fidelity and quantum phase transition for the Heisenberg chain with next-nearest neighbor interaction. Phys. Rev. E. 76(1–4), 061108 (2007)

    Article  ADS  Google Scholar 

  9. Ye, Y.: Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain. Phys. Lett. A. 309(3–4), 215–217 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Li, S.-B., Xu, J.-B.: Magnetic field effects on the optimal fidelity of standard teleportation via the two qubits Heisenberg XX chain in thermal equilibrium. arXiv:quant-ph/0312125 (2004)

  11. Yeo, Y., Liu, T., Lu, Y.-E., Yang, Q.-Z.: Quantum teleportation via a two-qubit Heisenberg XY chain—effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38(14), 3235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hao, X., Zhu, S.: Entanglement teleportation through 1D Heisenberg chain. Phys. Lett. A. 338(3–5), 175–181 (2005)

    Article  ADS  MATH  Google Scholar 

  13. He, Z., Zuhong, X.Y.Z.: Influence of intrinsic decoherence on quantum teleportation via two-qubit Heisenberg XYZ chain. Phys. Lett. A. 354, 79–83 (2006)

    Article  ADS  Google Scholar 

  14. Javad Akhtarshenas, S., Kheirandish, F., Mohammadi, H.: Influence of Dephasing on the Entanglement Teleportation via a two-qubit Heisenberg XYZ system. The European Physical Journal D. 62(3), 439–447 (2011)

    Article  ADS  Google Scholar 

  15. Zidan, N.: Quantum teleportation via two-qubit Heisenberg XYZ chain. Can. J. Phys. 92, 406–411 (2014)

    Article  ADS  Google Scholar 

  16. Qin, M., Ren, Z.-Z.: Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 14(6), 2055–2066 (2015)

    Article  ADS  MATH  Google Scholar 

  17. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A. 44(9), 5401–5406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Guo, J.-L., Xia, Y., Song, H.-S.: Effects of Dzyaloshinski–Moriya anisoyropic antisymmetric interaction on entanglement and teleportation in a two-qubit Heisenberg chain with intrinsic decoherence. Opt. Commun. 281, 2326–2330 (2008)

    Article  ADS  Google Scholar 

  19. Delgado, A., Saavedra, C., Retamal, J.C.: Quantum information and entanglement transfer for qutrits. Phys. Lett. A. 370(1), 22–27 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Mei-Yu, W., Feng-Li, Y.: Probabilistic chain teleportation of a qutrit-state. Commun. Theor. Phys. 54(2), 263 (2010)

    Article  ADS  MATH  Google Scholar 

  21. Chamoli, A & Bhandari, C. M.: Entanglement teleportation by qutrits. arXiv:quant-ph/0702223 (2007)

  22. Jafarpour, M., Naderi, N.: Qutrit teleportation under intrinsic decoherence. International Journal of Quantum Information. 14(5), 1650028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jami, S., Amerian, Z.: Thermal entanglement of a qubit-qutrit chain. IJRAP. 3(2), 75–84 (2014)

    Article  Google Scholar 

  24. Liang, Q., An-Min, W., Xiao-San, M.: Effect of Intrinsic Decoherence of Milburn’s Model on Entanglement of Two-Qutrit States. Commun. Theor. Phys. 49(2), 516–520 (2008)

    Article  ADS  MATH  Google Scholar 

  25. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  26. Arvind, K.S.M., Mukunda, N.: A generalized Pancharatnam geometric phase formula for three level quantum systems. J. Phys. A Math. Gen. 30(7), 2417 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. An, N.B.: Teleportation of two-quNit entanglement: Exploiting local resources. Phys. Lett. A. 9–14, 341 (2005)

    MATH  Google Scholar 

  28. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Naderi.

Appendices

Appendix 1

$$ {\varGamma}^0=\left(\begin{array}{ccc}1& 0& 0\\ {}0& 1& 0\\ {}0& 0& 1\end{array}\right), $$
(25)
$$ {\varGamma}^1=\left(\begin{array}{ccc}0& 1& 0\\ {}1& 0& 0\\ {}0& 0& 0\end{array}\right), $$
(26)
$$ {\varGamma}^2=\left(\begin{array}{ccc}0& -i& 0\\ {}i& 0& 0\\ {}0& 0& 0\end{array}\right), $$
(27)
$$ {\varGamma}^3=\left(\begin{array}{ccc}1& 0& 0\\ {}0& -1& 0\\ {}0& 0& 0\end{array}\right), $$
(28)
$$ {\varGamma}^4=\left(\begin{array}{ccc}0& 0& 1\\ {}0& 0& 0\\ {}1& 0& 0\end{array}\right), $$
(29)
$$ {\varGamma}^5=\left(\begin{array}{ccc}0& 0& -i\\ {}0& 0& 0\\ {}i& 0& 0\end{array}\right), $$
(30)
$$ {\varGamma}^6=\left(\begin{array}{ccc}0& 0& 0\\ {}0& 0& 1\\ {}0& 1& 0\end{array}\right), $$
(31)
$$ {\varGamma}^7=\left(\begin{array}{ccc}0& 0& 0\\ {}0& 0& -i\\ {}0& i& 0\end{array}\right), $$
(32)
$$ {\varGamma}^8=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1& 0& 0\\ {}0& 1& 0\\ {}0& 0& -2\end{array}\right). $$
(33)

Appendix 2

$$ \mid {\phi}^0\Big\rangle =\frac{1}{\sqrt{3}}\left(|2,0\Big\rangle +|1,1\Big\rangle +|0,2\Big\rangle \right) $$
(34)
$$ \mid {\phi}^1\Big\rangle =\frac{1}{\sqrt{3}}\left(|1,0\Big\rangle +|0,1\Big\rangle +|2,2\Big\rangle \right) $$
(35)
$$ \mid {\phi}^2\Big\rangle =\frac{1}{\sqrt{3}}\left(|0,0\Big\rangle +|2,1\Big\rangle +|1,2\Big\rangle \right) $$
(36)
$$ \mid {\phi}^3\Big\rangle =\frac{1}{\sqrt{3}}\left(|2,0\Big\rangle +{e}^{\frac{2\pi i}{3}}|1,1\Big\rangle +{e}^{-\frac{2\pi i}{3}}|0,2\Big\rangle \right) $$
(37)
$$ \mid {\phi}^4\Big\rangle =\frac{1}{\sqrt{3}}\left(|1,0\Big\rangle +{e}^{\frac{2\pi i}{3}}|0,1\Big\rangle +{e}^{-\frac{2\pi i}{3}}|2,2\Big\rangle \right) $$
(38)
$$ \mid {\phi}^5\Big\rangle =\frac{1}{\sqrt{3}}\left(|0,0\Big\rangle +{e}^{\frac{2\pi i}{3}}|2,1\Big\rangle +{e}^{-\frac{2\pi i}{3}}|1,2\Big\rangle \right) $$
(39)
$$ \mid {\phi}^6\Big\rangle =\frac{1}{\sqrt{3}}\left(|2,0\Big\rangle +{e}^{-\frac{2\pi i}{3}}|1,1\Big\rangle +{e}^{\frac{2\pi i}{3}}|0,2\Big\rangle \right) $$
(40)
$$ \mid {\phi}^7\Big\rangle =\frac{1}{\sqrt{3}}\left(|1,0\Big\rangle +{e}^{-\frac{2\pi i}{3}}|0,1\Big\rangle +{e}^{\frac{2\pi i}{3}}|2,2\Big\rangle \right) $$
(41)
$$ \mid {\phi}^8\Big\rangle =\frac{1}{\sqrt{3}}\left(|0,0\Big\rangle +{e}^{-\frac{2\pi i}{3}}|2,1\Big\rangle +{e}^{\frac{2\pi i}{3}}|1,2\Big\rangle \right) $$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, N., Jafapour, M. Influence of Magnetic Field on Qutrit Teleportation under Intrinsic Decoherence. Int J Theor Phys 58, 799–816 (2019). https://doi.org/10.1007/s10773-018-3975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3975-0

Keywords

Navigation