Skip to main content
Log in

True experimental reconstruction of quantum states and processes via convex optimization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)

    ADS  Google Scholar 

  2. James, D.F.V., Kwiat, P.G., William J, M., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    ADS  Google Scholar 

  3. Long, G.L., Yan, H.Y., Sun, Y.: Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B. Quantum Semiclass. Opt. 3, 376 (2001)

    ADS  Google Scholar 

  4. O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004)

    ADS  Google Scholar 

  5. Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997)

    ADS  Google Scholar 

  6. Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A.: Priority choice experimental two-qubit tomography: measuring one by one all elements of density matrices. Sci. Rep. 6, 19610 (2016)

    ADS  Google Scholar 

  7. Miranowicz, A., Bartkiewicz, K., Peřina, J., Koashi, M., Imoto, N., Nori, F.: Optimal two-qubit tomography based on local and global measurements: maximal robustness against errors as described by condition numbers. Phys. Rev. A 90, 062123 (2014)

    ADS  Google Scholar 

  8. Wölk, S., Sriarunothai, T., Giri, G.S., Wunderlich, C.: Distinguishing between statistical and systematic errors in quantum process tomography. New J. Phys. 21, 013015 (2019)

    ADS  Google Scholar 

  9. Xin, T., Dawei, L., Klassen, J., Nengkun, Y., Ji, Z., Chen, J., Ma, X., Long, G., Zeng, B., Laflamme, R.: Quantum state tomography via reduced density matrices. Phys. Rev. Lett. 118, 020401 (2017)

    ADS  MathSciNet  Google Scholar 

  10. Li, J., Huang, S., Luo, Z., Li, K., Dawei, L., Zeng, B.: Optimal design of measurement settings for quantum-state-tomography experiments. Phys. Rev. A 96, 032307 (2017)

    ADS  Google Scholar 

  11. Miranowicz, A.,   Özdemir, K., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: optimal robustness against errors as quantified by condition numbers. Phys. Rev. B 92, 075312 (2015)

    ADS  Google Scholar 

  12. Vind, F.A., Souza, A.M., Sarthour, R.S., Oliveira, I.S.: Quantum state tomography for strongly coupled nuclear spin systems. Phys. Rev. A 90, 062339 (2014)

    ADS  Google Scholar 

  13. Qi, B., Hou, Z., Wang, Y., Dong, D., Zhong, H.-S., Li, L., Xiang, G.-Y., Wiseman, H.M., Li, C.-F., Guo, G.-C.: Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. Quantum Inf. Process. 3, 19 (2017)

    ADS  Google Scholar 

  14. Schwemmer, C., Knips, L., Richart, D., Weinfurter, H., Moroder, T., Kleinmann, M., Gühne, O.: Systematic errors in current quantum state tomography tools. Phys. Rev. Lett. 114, 080403 (2015)

    ADS  Google Scholar 

  15. Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95, 062336 (2017)

    ADS  MathSciNet  Google Scholar 

  16. Ferrie, C.: Quantum model averaging. New J. Phys. 16, 093035 (2014a)

    ADS  MathSciNet  Google Scholar 

  17. Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113, 190404 (2014b)

    ADS  Google Scholar 

  18. Yang, J., Cong, S., Liu, X., Li, Z., Li, K.: Effective quantum state reconstruction using compressed sensing in NMR quantum computing. Phys. Rev. A 96, 052101 (2017)

    ADS  Google Scholar 

  19. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    ADS  Google Scholar 

  20. Branderhorst, M.P.A., Nunn, J., Walmsley, I.A., Kosut, R.L.: Simplified quantum process tomography. New J. Phys. 11, 115010 (2009)

    ADS  Google Scholar 

  21. Perito, I., Roncaglia, A.J., Bendersky, A.: Selective and efficient quantum process tomography in arbitrary finite dimension. Phys. Rev. A 98, 062303 (2018)

    ADS  Google Scholar 

  22. Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)

    ADS  Google Scholar 

  23. Rodionov, A.V., Veitia, A., Barends, R., Kelly, J., Sank, D., Wenner, J., Martinis, J.M., Kosut, R.L., Korotkov, A.N.: Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014)

    ADS  Google Scholar 

  24. Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93, 012103 (2016)

    ADS  Google Scholar 

  25. Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012302 (2017)

    ADS  Google Scholar 

  26. Maciel, T.O., Vianna, R.O., Sarthour, R.S., Oliveira, I.S.: Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1. New J. Phys. 17, 113012 (2015)

    ADS  Google Scholar 

  27. Singh, H., Arvind: Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Phys. Lett. A 380, 3051–3056 (2016a)

  28. Gaikwad, A., Rehal, D., Singh, A., Arvind: Experimental demonstration of selective quantum process tomography on an NMR quantum information processor. Phys. Rev. A 97, 022311 (2018)

  29. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature 4, 523–526 (2008)

    Google Scholar 

  30. Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., Wrachtrup, J.: Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8, 33–33 (2006)

    ADS  Google Scholar 

  31. Zhang, J., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014)

    ADS  Google Scholar 

  32. Schmiegelow, C.T., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography with single photons. Phys. Rev. Lett. 104, 123601 (2010)

    ADS  Google Scholar 

  33. Robert, J., Chapman, C.F., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117, 040402 (2016)

    Google Scholar 

  34. Wu, Z., Li, S., Zheng, W., Peng, X., Feng, M.: Experimental demonstration of simplified quantum process tomography. J. Chem. Phys. 138, 024318 (2013)

    ADS  Google Scholar 

  35. Schmiegelow, C.T., Bendersky, A., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography without ancilla. Phys. Rev. Lett. 107, 100502 (2011)

    ADS  Google Scholar 

  36. Kim, Y., Kim, Y.-S., Lee, S.-Y., Han, S.-W., Moon, S., Kim, Y.-H., Cho, Y.-W.: Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun. 9, 192 (2018)

    ADS  Google Scholar 

  37. Myrskog, S.H., Fox, J.K., Mitchell, M.W., Steinberg, A.M.: Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A 72, 013615 (2005)

    ADS  Google Scholar 

  38. Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)

    ADS  Google Scholar 

  39. Bialczak, R.C., Ansmann, M., Hofheinz, M., Lucero, E., Neeley, M., O’ Connell, A.D., Sank, D., Wang, H., Wenner, J., Steffen, M., Cleland, A.N., Martinis, J.M.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010)

    Google Scholar 

  40. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)

    ADS  Google Scholar 

  41. Branderhorst, M.P.A., Walmsley, I.A., Kosut, R.L., Rabitz, H.: Optimal experiment design for quantum state tomography of a molecular vibrational mode. J. Phys. B At. Mol. Opt. Phys. 41, 074004 (2008)

    ADS  Google Scholar 

  42. Huang, X.-L., Gao, J., Jiao, Z.-Q., Yan, Z.-Q., Ji, L., Jin, X.-M.: Reconstruction of quantum channel via convex optimization. Sci. Bull. (2019). https://doi.org/10.1016/j.scib.2019.11.009

    Article  Google Scholar 

  43. Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005)

    ADS  Google Scholar 

  44. Singh, A., Arvind: Entanglement detection on an NMR quantum-information processor using random local measurements. Phys. Rev. A 94, 062309 (2016b)

  45. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) pp. 284–289 (2004)

  46. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999). https://doi.org/10.1080/10556789908805766

    Article  MathSciNet  MATH  Google Scholar 

  47. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001)

    ADS  Google Scholar 

  48. Oliveira, I. S., Bonagamba, T. J., Sarthour, R. S., Freitas, J. C. C., deAzevedo, E. R.: NMR Quantum Information Processing. (Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 2007)

  49. Gavini-Viana, A., Souza, A.M., Soares-Pinto, D.O., Teles, J., Sarthour, R.S., deAzevedo, E.R., Bonagamba, T.J., Oliveira, I.S.: Normalization procedure for relaxation studies in NMR quantum information processing. Quantum Inf. Process. 9, 575–589 (2010)

    MATH  Google Scholar 

  50. Kraus, K., Bohm, A., Dollard, J.D., Wootters, W.H.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Google Scholar 

  51. Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)

    ADS  Google Scholar 

  52. Kofman, A.G., Korotkov, A.N.: Two-qubit decoherence mechanisms revealed via quantum process tomography. Phys. Rev. A 80, 042103 (2009)

    ADS  MathSciNet  Google Scholar 

  53. Singh, H., Arvind: Experimentally freezing quantum discord in a dephasing environment using dynamical decoupling. EPL Europhys. Lett. 118, 50001 (2017)

Download references

Acknowledgements

All the experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility of IISER Mohali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Kraus operators

A Kraus operators

The complete set of valid Kraus operators for the two-qubit system have been experimentally computed using the CCO QPT method. The Kraus operators corresponding to the Identity, CNOT gate and control-\(R^{\pi }_{x}\) gate are given below:

  • Kraus operators corresponding to Identity gate

    $$\begin{aligned} E_1= & {} {\begin{bmatrix} -0.0308 + 0.0457i &{} \quad -0.0028 - 0.0077i &{} \quad 0.0626 + 0.1056i &{} \quad 0.0022 + 0.0078i \\ 0.0070 + 0.0095i &{} \quad -0.0393 + 0.0633i &{} \quad -0.0055 - 0.0060i &{} \quad 0.0550 + 0.1068i \\ 0.0755 - 0.0678i &{} \quad 0.0203 + 0.0042i &{} \quad 0.0279 - 0.0575i &{} \quad 0.0052 + 0.0001i \\ 0.0395 + 0.0187i &{} \quad 0.0850 + 0.0079i &{} \quad 0.0153 + 0.0005i &{} \quad 0.0451 - 0.0399i \end{bmatrix}} \\ E_2= & {} { \begin{bmatrix} 0.0571 + 0.0943i &{} \quad -0.0133 + 0.0201i &{} \quad -0.1932 - 0.0604i &{} \quad -0.0069 - 0.0085i \\ -0.0071 + 0.0271i &{} \quad -0.0082 + 0.0968i &{} \quad 0.0173 - 0.0019i &{} \quad -0.1724 - 0.0574i \\ 0.0189 - 0.1154i &{} \quad 0.0269 - 0.0103i &{} \quad -0.0281 - 0.1005i &{} \quad 0.0091 - 0.0038i \\ 0.0481 - 0.0087i &{} \quad 0.0723 - 0.0485i &{} \quad -0.0040 + 0.0067i &{} \quad -0.0220 - 0.0980i \end{bmatrix}} \\ E_3= & {} { \begin{bmatrix} -0.0442 - 0.9758i &{} \quad -0.0014 + 0.0418i &{} \quad 0.0103 + 0.0259i &{} \quad -0.0100 - 0.0007i \\ 0.0005 - 0.0271i &{} \quad -0.0550 - 0.9813i &{} \quad 0.0095 + 0.0029i &{} \quad 0.0129 + 0.0272i \\ 0.0101 - 0.0239i &{} \quad 0.0088 - 0.0002i &{} \quad -0.0190 - 0.9617i &{} \quad 0.0233 + 0.0404i \\ -0.0096 + 0.0017i &{} \quad 0.0101 - 0.0205i &{} \quad 0.0242 - 0.0412i &{} \quad 0.0021 - 0.9671i \\ \end{bmatrix}} \end{aligned}$$
  • Kraus operators corresponding to CNOT gate

    $$\begin{aligned} E_1= & {} {\begin{bmatrix} 0.0344 - 0.0042i &{} \quad 0.0389 + 0.0130i &{} \quad -0.0068 + 0.0035i &{} \quad -0.0691 - 0.0003i \\ -0.0039 - 0.0038i &{} \quad -0.0208 - 0.0054i &{} \quad -0.0494 + 0.0543i &{} \quad 0.0125 + 0.0320i \\ 0.0548 + 0.0194i &{} \quad -0.0023 - 0.0251i &{} \quad -0.0714 + 0.0137i &{} \quad -0.0094 - 0.0117i \\ 0.0208 + 0.0094i &{} \quad 0.0654 + 0.0264i &{} \quad -0.0162 + 0.0148i &{} \quad 0.0221 + 0.0124i \end{bmatrix}} \\ E_2= & {} {\begin{bmatrix} 0.0124 + 0.0245i &{} \quad 0.0065 - 0.0008i &{} \quad -0.0508 - 0.1283i &{} \quad -0.0079 + 0.0205i \\ 0.0727 + 0.0709i &{} \quad -0.0132 - 0.0155i &{} \quad -0.0941 + 0.0168i &{} \quad 0.0494 - 0.0326i \\ 0.0323 - 0.0020i &{} \quad -0.0552 + 0.0537i &{} \quad 0.1017 + 0.0139i &{} \quad -0.0577 - 0.0248i \\ 0.0400 + 0.0811i &{} \quad -0.0112 + 0.0281i &{} \quad 0.0603 + 0.0204i &{} \quad -0.0381 - 0.0261i \end{bmatrix}} \\ E_3= & {} {\begin{bmatrix} 0.0907 - 0.0140i &{} \quad -0.0599 + 0.0491i &{} \quad 0.0581 + 0.0467i &{} \quad 0.0292 + 0.0058i \\ -0.0567 + 0.0142i &{} \quad -0.0978 - 0.0171i &{} \quad 0.0109 + 0.0093i &{} \quad -0.0310 - 0.1036i \\ 0.0267 + 0.0135i &{} \quad -0.0221 + 0.0546i &{} \quad -0.0700 + 0.0595i &{} \quad -0.0752 - 0.0404i \\ -0.0269 - 0.0463i &{} \quad -0.0340 + 0.0427i &{} \quad 0.0765 + 0.0205i &{} \quad -0.1294 + 0.0564i \end{bmatrix}} \\ E_4= & {} { \begin{bmatrix} 0.1786 + 0.0344i &{} \quad 0.1327 - 0.0629i &{} \quad 0.0228 + 0.0866i &{} \quad -0.0018 - 0.0201i \\ 0.0052 - 0.0290i &{} \quad -0.1264 - 0.0353i &{} \quad 0.0174 - 0.0797i &{} \quad -0.0397 + 0.0932i \\ -0.0346 + 0.0199i &{} \quad 0.0383 - 0.0361i &{} \quad 0.1008 - 0.0337i &{} \quad -0.1466 - 0.0222i \\ -0.0024 - 0.0169i &{} \quad -0.0415 - 0.0293i &{} \quad 0.1058 - 0.0050i &{} \quad 0.1214 - 0.1034i \end{bmatrix}} \\ E_5= & {} {\begin{bmatrix} 0.0706 + 0.9517i &{} \quad -0.0369 + 0.0847i &{} \quad 0.0250 + 0.0166i &{} \quad -0.0245 - 0.0130i \\ -0.0139 - 0.1052i &{} \quad -0.1412 + 0.9412i &{} \quad -0.0442 - 0.0280i &{} \quad -0.0077 - 0.0040i \\ -0.0187 + 0.0169i &{} \quad -0.0218 - 0.0073i &{} \quad -0.0414 + 0.0215i &{} \quad -0.0410 + 0.9380i \\ -0.0065 - 0.0224i &{} \quad -0.0537 + 0.0269i &{} \quad 0.0297 + 0.9390i &{} \quad -0.0516 + 0.0110i \end{bmatrix}} \end{aligned}$$
  • Kraus operators corresponding to control-\(R^{\pi }_{x}\) gate

    $$\begin{aligned} E_1= & {} { \begin{bmatrix} 0.0012 + 0.0210i &{} \quad 0.0165 + 0.0134i &{} \quad -0.0744 + 0.0001i &{} \quad -0.0121 - 0.0364i \\ 0.0359 + 0.0089i &{} \quad 0.0251 - 0.0080i &{} \quad -0.0654 - 0.0831i &{} \quad -0.0097 - 0.0251i \\ -0.0234 + 0.0153i &{} \quad -0.0354 - 0.0211i &{} \quad -0.0461 + 0.0131i &{} \quad 0.0004 + 0.0068i \\ 0.0365 + 0.0369i &{} \quad -0.0233 + 0.0167i &{} \quad -0.0068 + 0.0143i &{} \quad 0.0125 - 0.0159i \end{bmatrix}} \\ E_2= & {} { \begin{bmatrix} 0.0153 + 0.0286i &{} \quad 0.0001 - 0.1142i &{} \quad -0.0595 - 0.0245i &{} \quad 0.0153 - 0.0085i \\ -0.0141 + 0.0290i &{} \quad -0.0039 - 0.0323i &{} \quad -0.0097 + 0.0340i &{} \quad 0.1150 + 0.0166i \\ 0.0058 + 0.0004i &{} \quad -0.0092 - 0.0963i &{} \quad 0.0556 + 0.0204i &{} \quad -0.0167 - 0.0196i \\ -0.0192 + 0.0136i &{} \quad -0.0308 + 0.0298i &{} \quad 0.0407 + 0.0222i &{} \quad -0.1054 - 0.0405i \end{bmatrix}} \\ E_3= & {} { \begin{bmatrix} 0.1537 + 0.0345i &{} \quad 0.0717 + 0.0257i &{} \quad 0.0169 - 0.0805i &{} \quad -0.0006 - 0.0094i \\ -0.0074 + 0.0235i &{} \quad -0.1425 - 0.0207i &{} \quad -0.0232 + 0.0145i &{} \quad 0.0001 - 0.0276i \\ 0.0178 + 0.0428i &{} \quad -0.0375 - 0.0168i &{} \quad 0.0243 - 0.0328i &{} \quad -0.0154 + 0.1688i \\ -0.0239 - 0.0132i &{} \quad -0.0232 + 0.0146i &{} \quad 0.0017 - 0.1398i &{} \quad 0.0512 - 0.0880i \end{bmatrix}} \\ E_4= & {} { \begin{bmatrix} 0.0686 - 0.0160i &{} \quad -0.1101 - 0.0036i &{} \quad -0.0419 - 0.0764i &{} \quad -0.0257 - 0.0232i \\ -0.1221 - 0.0570i &{} \quad -0.0450 + 0.0133i &{} \quad -0.0657 + 0.0230i &{} \quad 0.0491 + 0.0496i \\ 0.0651 + 0.0241i &{} \quad 0.0643 - 0.0430i &{} \quad -0.1377 + 0.1614i &{} \quad -0.0061 + 0.0345i \\ -0.0239 + 0.0021i &{} \quad -0.0537 - 0.0392i &{} \quad -0.0594 - 0.0210i &{} \quad 0.0213 + 0.1907i \end{bmatrix}} \\ E_5= & {} {\begin{bmatrix} 0.1841 + 0.9399i &{} \quad -0.0704 + 0.1026i &{} \quad 0.0143 + 0.0058i &{} \quad 0.0012 + 0.0004i \\ -0.0949 - 0.0906i &{} \quad 0.0979 + 0.9445i &{} \quad 0.0084 + 0.0134i &{} \quad -0.0049 + 0.0210i \\ 0.0077 - 0.0108i &{} \quad -0.0075 + 0.0042i &{} \quad -0.0249 + 0.0765i &{} \quad 0.9336 - 0.0790i \\ -0.0076 - 0.0216i &{} \quad -0.0092 - 0.0086i &{} \quad 0.9304 - 0.0835i &{} \quad 0.0338 + 0.0811i \end{bmatrix}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A., Arvind & Dorai, K. True experimental reconstruction of quantum states and processes via convex optimization. Quantum Inf Process 20, 19 (2021). https://doi.org/10.1007/s11128-020-02930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02930-z

Keywords

Navigation