Skip to main content
Log in

Efficient experimental characterization of quantum processes via compressed sensing on an NMR quantum processor

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We employ the compressed sensing (CS) algorithm and a heavily reduced data set to experimentally perform true quantum process tomography (QPT) on an NMR quantum processor. We obtain the estimate of the process matrix \(\chi \) corresponding to various two- and three-qubit quantum gates with a high fidelity. The CS algorithm is implemented using two different operator bases, namely the standard Pauli basis and the Pauli-error basis. We experimentally demonstrate that the performance of the CS algorithm is significantly better in the Pauli-error basis, where the constructed \(\chi \) matrix is maximally sparse. We compare the standard least square (LS) optimization QPT method with the CS-QPT method and observe that, provided an appropriate basis is chosen, the CS-QPT method performs significantly better as compared to the LS-QPT method. In all the cases considered, we obtained experimental fidelities greater than 0.9 from a reduced data set, which was approximately 5–6 times smaller in size than a full data set. We also experimentally characterized the reduced dynamics of a two-qubit subsystem embedded in a three-qubit system and used the CS-QPT method to characterize processes corresponding to the evolution of two-qubit states under various J-coupling interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, J., Huang, S., Luo, Z., Li, K., Lu, D., Zeng, B.: Optimal design of measurement settings for quantum-state-tomography experiments. Phys. Rev. A 96, 032,307 (2017). https://doi.org/10.1103/PhysRevA.96.032307

    Article  Google Scholar 

  2. Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44(11–12), 2455–2467 (1997). https://doi.org/10.1080/09500349708231894

    Article  ADS  Google Scholar 

  3. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032,322 (2008). https://doi.org/10.1103/PhysRevA.77.032322

    Article  Google Scholar 

  4. Miranowicz, A., Bartkiewicz, K., Peřina, J., Koashi, M., Imoto, N., Nori, F.: Optimal two-qubit tomography based on local and global measurements: maximal robustness against errors as described by condition numbers. Phys. Rev. A 90, 062,123 (2014). https://doi.org/10.1103/PhysRevA.90.062123

    Article  Google Scholar 

  5. Qi, B., Hou, Z., Wang, Y., Dong, D., Zhong, H.S., Li, L., Xiang, G.Y., Wiseman, H.M., Li, C.F., Guo, G.C.: Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. Quant. Inf. Proc. 3(1), 19 (2017). https://doi.org/10.1038/s41534-017-0016-4

    Article  Google Scholar 

  6. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052,312 (2001). https://doi.org/10.1103/PhysRevA.64.052312

    Article  Google Scholar 

  7. Rambach, M., Qaryan, M., Kewming, M., Ferrie, C., White, A.G., Romero, J.: Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett. 126, 100,402 (2021). https://doi.org/10.1103/PhysRevLett.126.100402

    Article  Google Scholar 

  8. Kaznady, M.S., James, D.F.V.: Numerical strategies for quantum tomography: alternatives to full optimization. Phys. Rev. A 79, 022,109 (2009). https://doi.org/10.1103/PhysRevA.79.022109

    Article  Google Scholar 

  9. ÓBrien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-not gate. Phys. Rev. Lett 93, 080502 (2004). https://doi.org/10.1103/PhysRevLett.93.080502

    Article  ADS  Google Scholar 

  10. Surawy-Stepney, T., Kahn, J., Kueng, R., Guta, M.: Projected least-squares quantum process tomography, Quantum 6, 844 (2022). https://doi.org/10.22331/q-2022-10-20-844

  11. Branderhorst, M.P.A., Nunn, J., Walmsley, I.A., Kosut, R.L.: Simplified quantum process tomography. New J. Phys. 11(11), 115010 (2009)

  12. Huang, X.L., Gao, J., Jiao, Z.Q., Yan, Z.Q., Zhang, Z.Y., Chen, D.Y., Ji, L., Jin, X.M.: Reconstruction of quantum channel via convex optimization. Sci. Bull. 65, 286–292 (2020). https://doi.org/10.1016/j.scib.2019.11.009

    Article  Google Scholar 

  13. Perito, I., Roncaglia, A.J., Bendersky, A.: Selective and efficient quantum process tomography in arbitrary finite dimension. Phys. Rev. A 98, 062,303 (2018). https://doi.org/10.1103/PhysRevA.98.062303

    Article  Google Scholar 

  14. Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012,302 (2017). https://doi.org/10.1103/PhysRevA.95.012302

    Article  Google Scholar 

  15. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett 90, 193601 (2003). https://doi.org/10.1103/PhysRevLett.90.193601

    Article  ADS  Google Scholar 

  16. Gaikwad, A., Rehal, D., Singh, A., Arvind, Dorai, K.: Experimental demonstration of selective quantum process tomography on an NMR quantum information processor. Phys. Rev. A 97, 022,311 (2018). https://doi.org/10.1103/PhysRevA.97.022311

    Article  Google Scholar 

  17. Xin, T., Lu, S., Cao, N., Anikeeva, G., Lu, D., Li, J., Long, G., Zeng, B.: Local-measurement-based quantum state tomography via neural networks. NPJ Quantum Inf 5(1), 109 (2019). https://doi.org/10.1038/s41534-019-0222-3

    Article  ADS  Google Scholar 

  18. Xin, T., Nie, X., Kong, X., Wen, J., Lu, D., Li, J.: Quantum pure state tomography via variational hybrid quantum–classical method. Phys. Rev. Appl. 13, 024,013 (2020). https://doi.org/10.1103/PhysRevApplied.13.024013

    Article  Google Scholar 

  19. Gaikwad, A., Arvind, Dorai, K.: True experimental reconstruction of quantum states and processes via convex optimization. Quant. Inf. Proc 20(1), 19 (2021). https://doi.org/10.1007/s11128-020-02930-z

    Article  MathSciNet  Google Scholar 

  20. Zhao, D., Wei, C., Xue, S., Huang, Y., Nie, X., Li, J., Ruan, D., Lu, D., Xin, T., Long, G.: Characterizing quantum simulations with quantum tomography on a spin quantum simulator. Phys. Rev. A 103, 052,403 (2021). https://doi.org/10.1103/PhysRevA.103.052403

    Article  Google Scholar 

  21. Zhang, J., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050,502 (2014). https://doi.org/10.1103/PhysRevLett.112.050502

    Article  Google Scholar 

  22. Schmiegelow, CTs., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography with single photons. Phys. Rev. Lett 104, 123,601 (2010). https://doi.org/10.1103/PhysRevLett.104.123601

    Article  Google Scholar 

  23. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature 4, 523–526 (2008). https://doi.org/10.1038/nphys1639

    Article  Google Scholar 

  24. Chow, J.M., Gambetta, J.M., Tornberg, L., Koch, J., Bishop, L.S., Houck, A.A., Johnson, B.R., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Randomized benchmarking and process tomography for gate errors in a solid-state qubit. Phys. Rev. Lett. 102, 090,502 (2009). https://doi.org/10.1103/PhysRevLett.102.090502

    Article  Google Scholar 

  25. Gaikwad, A., Shende, K., Dorai, K.: Experimental demonstration of optimized quantum process tomography on the IBM quantum experience. Int. J. Quantum Inf. 19(07), 2040004 (2021). https://doi.org/10.1142/S0219749920400043

    Article  MathSciNet  MATH  Google Scholar 

  26. Gaikwad, A., Shende, K., Arvind: Implementing efficient selective quantum process tomography of superconducting quantum gates on IBM quantum experience. Sci. Rep. 12(1), 3688 (2022). https://doi.org/10.1038/s41598-022-07721-3

    Article  ADS  Google Scholar 

  27. Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006). https://doi.org/10.1103/PhysRevLett.97.220407

    Article  ADS  Google Scholar 

  28. da Silva, M.P., Landon-Cardinal, O., Poulin, D.: Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107, 210,404 (2011). https://doi.org/10.1103/PhysRevLett.107.210404

    Article  Google Scholar 

  29. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012,307 (2008). https://doi.org/10.1103/PhysRevA.77.012307

    Article  MATH  Google Scholar 

  30. Yang, J., Cong, S., Liu, X., Li, Z., Li, K.: Effective quantum state reconstruction using compressed sensing in NMR quantum computing. Phys. Rev. A 96, 052,101 (2017). https://doi.org/10.1103/PhysRevA.96.052101

    Article  Google Scholar 

  31. Rodionov, A.V., Veitia, A., Barends, R., Kelly, J., Sank, D., Wenner, J., Martinis, J.M., Kosut, R.L., Korotkov, A.N.: Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144,504 (2014). https://doi.org/10.1103/PhysRevB.90.144504

    Article  Google Scholar 

  32. Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100,401 (2011). https://doi.org/10.1103/PhysRevLett.106.100401

    Article  Google Scholar 

  33. Kraus, K., Bohm, A., Dollard, J., Wootters, W.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag Berlin Heidelberg (1983). https://doi.org/10.1007/3-540-12732-1

  34. Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012,314 (2001). https://doi.org/10.1103/PhysRevA.64.012314

    Article  Google Scholar 

  35. Korotkov, A.N.: Error matrices in quantum process tomography. arXiv (2013)

  36. Kosut, R.L.: Quantum process tomography via l1-norm minimization. arXiv (2008)

  37. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9), 589–592 (2008). https://doi.org/10.1016/j.crma.2008.03.014

    Article  MathSciNet  MATH  Google Scholar 

  38. Lofberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) (2004). https://ieeexplore.ieee.org/document/1393890

  39. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Opt. Methods Softw. 11(1—-2), 625–653 (1999). https://doi.org/10.1080/10556789908805766

    Article  MathSciNet  MATH  Google Scholar 

  40. Long, G.L., Yan, H.Y., Sun, Y.: Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B Quantum Semiclassical Opt. 3(6), 376 (2001) http://stacks.iop.org/1464-4266/3/i=6/a=305

  41. Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C., deAzevedo, E.R.: NMR Quantum Information Processing. Elsevier, Oxford (2007)

    MATH  Google Scholar 

  42. Egan, L., Debroy, D.M., Noel, C., Risinger, A., Zhu, D., Biswas, D., Newman, M., Li, M., Brown, K.R., Cetina, M., Monroe, C.: Fault-tolerant operation of a quantum error-correction code (2021)

  43. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  44. Mooney, G., White, G.A.L., Hill, C.D., Hollenberg, L.: Generation and verification of 27-qubit greenberger–horne–zeilinger states in a superconducting quantum computer. J. Phys. Commun. (2021). https://doi.org/10.1088/2399-6528/ac1df7

    Article  Google Scholar 

  45. Singh, H., Arvind: Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022,302 (2018). https://doi.org/10.1103/PhysRevA.97.022302

    Article  Google Scholar 

  46. Dogra, S., Dorai, K.: Arvind: experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an nmr quantum information processor. Phys. Rev. A 91, 022,312 (2015). https://doi.org/10.1103/PhysRevA.91.022312

    Article  Google Scholar 

  47. Singh, D., Singh, J., Dorai, K.: Arvind: experimental demonstration of fully contextual quantum correlations on an NMR quantum information processor. Phys. Rev. A 100, 022,109 (2019). https://doi.org/10.1103/PhysRevA.100.022109

    Article  Google Scholar 

Download references

Acknowledgements

All the experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility of IISER Mohali. Arvind acknowledges financial support from DST/ICPS/QuST/Theme-1/2019/Q-68. K. D. acknowledges financial support from DST/ICPS/QuST/Theme-2/2019/Q-74.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A., Arvind & Dorai, K. Efficient experimental characterization of quantum processes via compressed sensing on an NMR quantum processor. Quantum Inf Process 21, 388 (2022). https://doi.org/10.1007/s11128-022-03695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03695-3

Keywords

Navigation