Skip to main content
Log in

Enhancing non-local correlations in a dissipative two-qubit system via dipole–dipole interplay

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The behavior of the generated non-local correlations between two qubits interacting with a linear/nonlinear cavity mode is studied. The behavior of these correlations is discussed in the presence/absence of the dipole–dipole interaction and the intrinsic noise. These correlations is quantified by using two versions of measurement-induced non-locality and the logarithms negative entanglement. The effect of the atomic and field parameters on the behavior of these correlations is discussed. The sensitivity of the used measures on these correlations are investigated, where different phenomena are predicated as collapse/revival, sudden death/birth and long-lived correlations. It is shown that, by switching on the dipole–dipole interaction, the amplitudes of the oscillations decrease and consequently the correlations between the atomic subsystem increase. Moreover, it overcomes the decay due to the intrinsic noise and inhibits the deterioration on the generated non-local correlation between the atomic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304 (2007)

    Article  ADS  Google Scholar 

  3. Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. J. High Energy Phys. 2016, 180 (2015)

    Article  MathSciNet  Google Scholar 

  4. Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  5. Clauser, J.F., Horne, M.A., Shimony, A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  6. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  7. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  11. Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  13. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  14. Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)

    Article  ADS  Google Scholar 

  15. Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Measurement-induced nonlocality based on Wigner–Yanase skew information. Europhys. Lett. 114, 10007 (2016)

    Article  ADS  Google Scholar 

  16. Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80, 052304 (2009)

    Article  ADS  Google Scholar 

  17. Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ramzan, M.: Quantum discord amplification of fermionic systems in an accelerated frame. Quantum Inf. Process. 13, 259 (2014)

    Article  ADS  Google Scholar 

  19. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhanga, G.-F., Ji, A.-L., Fan, H., Liu, W.-M.: Quantum correlation dynamics of two qubits in noisy environments The factorization law and beyond. Ann. Phys. 327, 2074 (2012)

    Article  ADS  Google Scholar 

  21. Mohamed, A.-B.A.: Measurement-induced nonlocality and geometric quantum discord in two SC-charge qubits. Optik 124, 5369 (2013)

    Article  ADS  Google Scholar 

  22. Mohamed, A.-B.A., Metwally, N.: Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 381, 137 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)

    Article  ADS  Google Scholar 

  24. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  25. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  27. Mohamed, A.-B.A.: Bipartite non classical correlations for a lossy two connected qubit cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process 17, 96 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mohamed, A.-B.A., Eleuch, H.: Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 35, 47 (2018)

    Article  ADS  Google Scholar 

  29. Blatt, R., Wineland, D.J.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  30. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Armour, A.D., Blencowe, M.P., Schwab, K.C.: Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)

    Article  ADS  Google Scholar 

  32. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Circuit quantum electrodynamics Coherent coupling of a single photon to a Cooper pair box. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  33. Yin, Z., Li, T., Zhang, X., Duan, L.M.: Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013)

    Article  ADS  Google Scholar 

  34. Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  35. You, J.Q., Nori, F.: Cooper-pair box qubits in a quantum electrodynamic cavity. Phys. E 18, 33 (2003)

    Article  Google Scholar 

  36. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  37. Berrada, K., Al-Rajhi, M.A.: Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit deformed bosonic field system under dephasing effect. Quantum Inf. Process 16, 239 (2017)

    Article  ADS  Google Scholar 

  38. Cui, W., Xi, Z.R., Pan, Y.: Non-Markovian entanglement dynamics in coupled superconducting qubit systems. Eur. Phys. J. D 59, 479 (2010)

    Article  ADS  Google Scholar 

  39. Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)

    Article  ADS  Google Scholar 

  40. Mohamed, A.-B.A.: Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole–dipole interaction. Rep. Math. Phys. 72, 121 (2013)

    Article  ADS  Google Scholar 

  41. Ikram, M., Li, F.L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336 (2007)

    Article  ADS  Google Scholar 

  42. Metwally, N.: Information loss in local dissipation environments. Int. J. Theor. Phys. 49, 1571 (2010)

    Article  MathSciNet  Google Scholar 

  43. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  44. Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Phys. A 390, 519 (2011)

    Article  Google Scholar 

  45. Metwally, N.: Enhancing entanglement, local and non-local information of accelerated two-qubit and two-qutrit systems via weak-reverse measurements. EPL 116, 60006 (2016)

    Article  ADS  Google Scholar 

  46. Guo, J.-L., Song, H.-S.: Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 56, 496 (2009)

    Article  ADS  Google Scholar 

  47. Zheng, L., Zhang, G.-F.: Intrinsic decoherence in Jaynes–Cummings model with Heisenberg exchange interaction. Eur. Phys. J. D 71, 288 (2017)

    Article  ADS  Google Scholar 

  48. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  49. Rabi, I.I.: On the process of space quantization. Phys. Rev. 49, 324 (1936)

    Article  ADS  Google Scholar 

  50. Rabi, I.I.: On the process of space quantization. Phys. Rev. 51, 652 (1937)

    Article  ADS  Google Scholar 

  51. Zhang, J.-Q., Xiong, W., Zhang, S., Li, Y., Feng, M.: Generating the Schrodinger cat state in a nanomechanical resonator coupled to a charge qubit. Ann. Phys. 527, 180 (2015)

    Article  MathSciNet  Google Scholar 

  52. Johansson, J., Saito, S., Meno, T., Nakano, H., Ueda, M., Semba, K., Takayanagi, H.: Vacuum rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)

    Article  ADS  Google Scholar 

  53. Metwally, N., Abdulla, M.S., Abdel-Aty, M.: Enhancement non classical properties of a pair of qubit via deformed operators. Int. J. Theor. Phys. 49, 2051 (2010)

    Article  MathSciNet  Google Scholar 

  54. Metwally, N.: Dynamics of information in the presence of deformation. I. J. Quantum Inf. 9, 937 (2011)

    Article  Google Scholar 

  55. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  56. Barut, A.O., Girardello, L.: New coherent states associated with non-compact groups. Commun. Math. Phys. 21, 41 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  57. Hu, M.-L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)

    Article  ADS  Google Scholar 

  58. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees for their important remarks which have helped him to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Metwally, N. Enhancing non-local correlations in a dissipative two-qubit system via dipole–dipole interplay. Quantum Inf Process 18, 79 (2019). https://doi.org/10.1007/s11128-019-2198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2198-5

Keywords

Navigation