Skip to main content
Log in

Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit-deformed bosonic field system under dephasing effect

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a detailed study on the evolution of some measures of nonclassicality and entanglement in the framework of the interaction between a superconducting qubit and deformed bosonic fields under decoherence effect. We compare the dynamical behavior of the different quantum quantifiers by exploiting a large set of nonlinear bosonic fields that are characterized by the deformation parameter. Additionally, we demonstrate how the connection between the appearance of the nonlinearity in the deformed field and the quantum information quantifiers. The time correlation between entropy squeezing, purity, and entanglement is examined in terms of the physical parameters involved in the whole system. Lastly, we explore the exact ranges of the physical parameters in order to combat the decoherence effect and maintain high amount of entanglement during the time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ingold, G., Nazarov, Y.: Effect of the electromagnetic environment on single charge tunneling. In: Grabert, H., Devoret, M.H. (eds.) Single Charge Tunneling. NATO ASI Series B, vol. 294, p. 21. Plenum, New York (1992)

    Chapter  Google Scholar 

  2. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  4. Hirata, K., Ooi, S., Yu, S., Sadki, E.H., Mochiku, T.: Novel magnetic sensors using high \(T_c\) superconductors. Supercond. Sci. Technol. 17, 432 (2004)

    Article  ADS  Google Scholar 

  5. Voss, R.F., Webb, R.A.: Phase coherence in a weakly coupled array of 20 000 Nb Josephson junctions. Phys. Rev. B 25, 3446 (1982)

    Article  ADS  Google Scholar 

  6. Nahum, M., Eiles, T.M., Martinis, J.M.: Electronic microrefrigerator based on a normal-insulator–superconductor tunnel junction. Appl. Phys. Lett. 65, 3123 (1994)

    Article  ADS  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Eichler, C., Lang, C., Fink, J.M., Govenius, J., Filipp, S., Wallraff, A.: Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012)

    Article  ADS  Google Scholar 

  9. Drummond, P.D., Ficek, Z.: Quantum Squeezing. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  10. Wodkiewicz, K.: Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 32, 4750 (1981)

    Article  ADS  Google Scholar 

  11. Agarwal, G.S., Puri, R.R.: Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 41, 3782 (1990)

    Article  ADS  Google Scholar 

  12. Ashraf, M.M., Razmi, M.S.K.: Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes–Cummings model. Phys. Rev. A 45, 8121 (1992)

    Article  ADS  Google Scholar 

  13. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  14. Civitarese, O., Reboiro, M.: Atomic squeezing in three level atoms. Phys. Lett. A 357, 224 (2006)

    Article  ADS  Google Scholar 

  15. Civitarese, O., Reboiro, M., Rebón, L., Tielas, D.: Atomic squeezing in three-level atoms with effective dipole–dipole atomic interaction. Phys. Lett. A 374, 2117 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Poulsen, U.V., MÃÿlmer, K.: Squeezed light from spin-squeezed atoms. Phys. Rev. Lett. 87, 123601 (2001)

    Article  ADS  Google Scholar 

  17. Yukalov, V.I., Yukalova, E.P.: Atomic squeezing under collective emission. Phys. Rev. A 70, 053828 (2004)

    Article  ADS  Google Scholar 

  18. Wang, X.: Spin squeezing in nonlinear spin-coherent states. J. Opt. B Quantum Semiclass. Opt. 3, 93 (2001)

    Article  ADS  Google Scholar 

  19. Rojo, A.G.: Optimally squeezed spin states. Phys. Rev. A 68, 013807 (2003)

    Article  ADS  Google Scholar 

  20. Wang, X., Sanders, B.C.: Relations between bosonic quadrature squeezing and atomic spin squeezing. Phys. Rev. A 68, 033821 (2003)

    Article  ADS  Google Scholar 

  21. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  22. El-Oranya, F.A.A., Wahiddinb, M.R.B., Obada, A.-S.F.: Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field. Opt. Commun. 281, 2854 (2008)

    Article  ADS  Google Scholar 

  23. Kuzmich, A., Molmer, K., Polzik, E.S.: Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782 (1997)

    Article  ADS  Google Scholar 

  24. Sanchez-Ruiz, J.: Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 201, 125 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wu, R.B., et al.: Spectral analysis and identification of noises in quantum systems. Phys. Rev. A 87, 022324 (2013)

    Article  ADS  Google Scholar 

  26. Liu, Y.X., Wei, L.F., Nori, F.: Tomographic measurements on superconducting qubit states. Phys. Rev. B 72, 014547 (2005)

    Article  ADS  Google Scholar 

  27. Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)

    Article  ADS  Google Scholar 

  28. Agarwal, G.S., Puri, R.R.: Exact quantum-electrodynamics results for scattering, emission, and absorption from a Rydberg atom in a cavity with arbitrary Q. Phys. Rev. A 33, 1757 (1986)

    Article  ADS  Google Scholar 

  29. Daeubler, B., Risken, H., Schoendorff, L.: Analytic solution for inversion and intensity of the Jaynes–Cummings model with cavity damping. Phys. Rev. A 46, 1654 (1992)

    Article  ADS  Google Scholar 

  30. Kuang, L.-M., Chen, X., Chen, G.-H., Mo-Lin, G.: Jaynes–Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997)

    Article  ADS  Google Scholar 

  31. Breuer, H.-P., Dorner, U., Petruccione, F.: Numerical integration methods for stochastic wave function equations. Comput. Phys. Commun. 132, 30 (2000)

    Article  ADS  MATH  Google Scholar 

  32. Chuang, I.L., Yamamoto, Y.: Creation of a persistent quantum bit using error correction. Phys. Rev. A 55, 114 (1997)

    Article  ADS  Google Scholar 

  33. Palma, G.M., Suominen, K., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A 452, 567 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Makhlin, Y., Schon, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  35. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S., Schoelkopf, R.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  36. Abdel-Khalek, S., Berrada, K., Eleuch, H.: Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: entanglement and Wehrl entropy. Ann. Phys. 361, 247 (2015)

    Article  MathSciNet  Google Scholar 

  37. Berrada, K., Abdel-Khalek, S., Obada, A.-S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412 (2012)

    Article  ADS  MATH  Google Scholar 

  38. Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of flux qubits due to \(1/f\) flux noise. Phys. Rev. Lett. 97, 167001 (2006)

    Article  ADS  Google Scholar 

  39. Dey, A., Yarlagadda, S.: Polaron dynamics and decoherence in an interacting two-spin system coupled to an optical-phonon environment. Phys. Rev. B 89, 064311 (2014)

    Article  ADS  Google Scholar 

  40. Sharma, S., Rajak, A.: Study of Loschmidt echo for two-dimensional Kitaev model. J. Stat. Mech. Theory Exp. 08, 08005 (2012)

    Article  Google Scholar 

  41. Nag, T., Divakaran, U., Dutta, A.: Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points. Phys. Rev. B 86, 020401 (2012)

    Article  ADS  Google Scholar 

  42. Rajak, A., Divakaran, U.: Effect of double local quenches on Loschmidt echo and entanglement entropy of a one-dimensional quantum system. arXiv: 1507.00963 (2015)

  43. Biedenharn, L.C.: The quantum group \(SU_q(2)\) and a q-analogue of the boson operators. J. Phys. A. 22, L873 (1989)

    Article  ADS  MATH  Google Scholar 

  44. MacFarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J. Phys. A. 22, 4581 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ballesteros, A., Civitarese, O., Reboiro, M.: Correspondence between the q-deformed harmonic oscillator and finite range potentials. Phys. Rev. C 68, 044307 (2003)

    Article  ADS  Google Scholar 

  46. Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q-Tensor Algebras. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  47. Meljanac, S., Milekovic, M., Pallua, S.: Unified view of deformed single-mode oscillator algebras. Phys. Lett. B 328, 55 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  48. Ballesteros, A., Civitarese, O., Reboiro, M.: Nonstandard q-deformed realizations of the harmonic oscillator. Phys. Rev. C 72, 014305 (2005)

    Article  ADS  Google Scholar 

  49. Floratos, E.G.: The many-body problem for q-oscillators. J. Phys. A 24, 4739 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Avancini, S.S., Krein, G.: Many-body problems with composite particles and q-Heisenberg algebras. J. Phys. A 28, 685 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Lorek, A., Ruffing, A., Wess, J.: A q-deformation of the harmonic oscillator. Z. Phys. C 74, 369 (1997)

    Article  MathSciNet  Google Scholar 

  52. FichtmÂÍuller, M., Lorek, A., Wess, J.: q-deformed phase space and its lattice structure. Z. Phys. C 71, 533 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  53. Schwenk, J., Wess, J.: A q-deformed quantum mechanical toy model. Phys. Lett. B 291, 273 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  54. Zhang, J.-Z.: A q-deformed uncertainty relation. Phys. Lett. A 262, 125 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Zhang, J.-Z.: A q-deformed quantum mechanics. Phys. Lett. B 440, 66 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  56. Zhang, J.-Z., Osland, P.: Perturbative aspects of q-deformed dynamics. Eur. Phys. J. C 20, 393 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  57. Ballesteros, A., Civitarese, O., Herranz, F.J., Reboiro, M.: Fermion–boson interactions and quantum algebras. Phys. Rev. C 66, 064317 (2002)

    Article  ADS  Google Scholar 

  58. Sviratcheva, K.D., Bahri, C., Georgieva, A.I., Draayer, J.P.: Physical significance of q deformation and many-body interactions in nuclei. Phys. Rev. Lett. 93, 152501 (2004)

    Article  ADS  Google Scholar 

  59. Ya, S., Mikhalychev, A.B.: Single-atom laser generates nonlinear coherent states. Phys. Rev. A 85, 063817 (2012)

    Article  ADS  Google Scholar 

  60. Fragner, A., Goeppl, M., Fink, J.M., Baur, M., Bianchetti, R., Leek, P.J., Blais, A., Wallraff, A.: Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift. Science 322, 1357 (2008)

    Article  ADS  Google Scholar 

  61. Astafiev, O., Inomata, K., Niskanen, A.O., Yamamoto, T., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Single artificial-atom lasing. Nature 449, 588 (2007)

    Article  ADS  Google Scholar 

  62. Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  63. Shevchenko, S.N., Ashhab, S., Nori, F.: Landau–zener–stückelberg interferometry. Phys. Rep. 492, 1 (2010)

    Article  ADS  Google Scholar 

  64. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  65. Kares, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 1983. Springer, Berlin (1983). (1983 edition)

    Google Scholar 

  66. Fang, M.F., Zhou, P., Swain, S.: Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Abdel-Khalek, S., Berrada, K., Ooi, C.H.R.: Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 22, 1449 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrada, K., Al-Rajhi, M.A. Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit-deformed bosonic field system under dephasing effect. Quantum Inf Process 16, 239 (2017). https://doi.org/10.1007/s11128-017-1686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1686-8

Keywords

Navigation