Skip to main content
Log in

Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Channels composed by Einstein–Podolsky–Rosen (EPR) pairs are capable of teleporting arbitrary multipartite states. The question arises whether EPR channels are also optimal against imperfections. In particular, the teleportation of Greenberger–Horne–Zeilinger states (GHZ) requires three EPR states as the channel and full measurements in the Bell basis. We show that, by using two GHZ states as the channel, it is possible to transport any unknown three-qubit state of the form \(c_0|000\rangle +c_1|111\rangle \). The teleportation is made through measurements in the GHZ basis, and, to obtain deterministic results, in most of the investigated scenarios, four out of the eight elements of the basis need to be unambiguously distinguished. Most importantly, we show that when both systematic errors and noise are considered, the fidelity of the teleportation protocol is higher when a GHZ channel is used in comparison with that of a channel composed by EPR pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennet, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bowmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Pirandola, S., et al.: Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  4. Mattle, K., et al.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  5. Pan, J.-W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  7. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  8. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  9. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452(1954), 2551–2577 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  11. Cao, M., Zhu, S.-Q., Fang, J.-X.: Teleportation of n-particle state via n pairs of EPR channels. Commun. Theor. Phys. 41, 689–692 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, C.-P., Guo, G.-C.: A proposal of teleportation for three-particle entangled state. Chin. Phys. Lett. 16, 628 (1999)

    Article  ADS  Google Scholar 

  13. Fang, J., Lin, Y., Zhu, S., Chen, X.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67, 014305 (2003)

    Article  ADS  Google Scholar 

  14. Ikram, M., Zhu, S.-Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, Q., et al.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2(10), 678–682 (2006)

    Article  Google Scholar 

  16. Almeida, N.G., et al.: One-cavity scheme for atomic-state teleportation through GHZ states. Phys. Lett. A 241, 213–217 (1998)

    Article  ADS  Google Scholar 

  17. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Long, Y., Qiu, D., Long, D.: Perfect teleportation between arbitrary split of six partites by a maximally genuinely entangled six-qubit state. Int. J. Quantum Inform. 08, 821 (2010)

    Article  MATH  Google Scholar 

  19. Nie, Y.-Y., et al.: Controlled teleportation of an arbitrary three-qubit state through a genuine six-qubit entangled state and Bell-state-measurements. Int. J. Quantum Inform. 09, 763 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  21. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys 4(1), 48 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through its program INCT-IQ, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Parisio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.M., Fonseca, E.A., Moreno, M.G.M. et al. Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes. Quantum Inf Process 16, 254 (2017). https://doi.org/10.1007/s11128-017-1705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1705-9

Keywords

Navigation