Skip to main content
Log in

Hadamard quantum broadcast channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver’s system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cover, T.M.: Broadcast channels. IEEE Trans. Inf. Theory 18(1), 2–14 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Marton, K.: A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory 25(3), 306–311 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cover, T.M.: Comments on broadcast channels. IEEE Trans. Inf. Theory 44(6), 2524–2530 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gamal, A.E., Kim, Y.-H.: Network Information Theory. Cambridge University Press, Cambridge (2012). arXiv:1001.3404

    Google Scholar 

  5. Yard, J., Hayden, P., Devetak, I.: Quantum broadcast channels. IEEE Trans. Inf. Theory 57(10), 7147–7162 (2011). arXiv:quant-ph/0603098

    Article  MathSciNet  MATH  Google Scholar 

  6. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  7. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  8. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76(15), 2818–2821 (1996). arXiv:quant-ph/9511010

    Article  ADS  Google Scholar 

  9. Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99(24), 240501 (2007). arXiv:0707.0620

    Article  ADS  Google Scholar 

  10. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100(9), 090502 (2008). arXiv:0707.0848

    Article  ADS  Google Scholar 

  11. Piani, M.: Local broadcasting of quantum correlations (August 2016). arXiv:1608.02650

  12. Savov, I., Wilde, M.M.: Classical codes for quantum broadcast channels. IEEE Trans. Inf. Theory 61(12), 1–12 (2015). arXiv:1111.3645

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupuis, F., Hayden, P., Li, K.: A father protocol for quantum broadcast channels. IEEE Trans. Inf. Theory 56(6), 2946–2956 (2010). arXiv:quant-ph/0612155

    Article  MathSciNet  MATH  Google Scholar 

  14. Radhakrishnan, J., Sen, P., Warsi, N.: One-shot Marton inner bound for classical–quantum broadcast channel. IEEE Trans. Inf. Theory 62(5), 2836–2848 (2016). arXiv:1410.3248

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirche, C., Morgan, C.: An improved rate region for the classical-quantum broadcast channel. In: Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, pp. 2782–2786 (2015). arXiv:1501.07417

  16. Seshadreesan, K.P., Takeoka, M., Wilde, M.M.: Bounds on entanglement distillation and secret key agreement for quantum broadcast channels. IEEE Trans. Inf. Theory 62(5), 2849–2866 (2016). arXiv:1503.08139

    Article  MathSciNet  MATH  Google Scholar 

  17. Takeoka, M., Seshadreesan, K.P., Wilde, M.M.: Unconstrained distillation capacities of a pure-loss bosonic broadcast channel. In: Proceedings of the 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, pp. 2484–2488 (July 2016). arXiv:1601.05563

  18. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003). arXiv:quant-ph/0302031

    Article  MathSciNet  MATH  Google Scholar 

  19. King, C., Matsumoto, K., Nathanson, M., Ruskai, M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13(2), 391–423 (2007). J. T. Lewis memorial issue. arXiv:quant-ph/0509126

    MathSciNet  MATH  Google Scholar 

  20. Brádler, K., Hayden, P., Touchette, D., Wilde, M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81(6), 062312 (2010). arXiv:1001.1732

    Article  ADS  Google Scholar 

  21. Wilde, M.M., Hsieh, M.-H.: The quantum dynamic capacity formula of a quantum channel. Quantum Inf. Process. 11(6), 1431–1463 (2012). arXiv:1004.0458

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wilde, M.M.: From Classical to Quantum Shannon Theory (March 2016). arXiv:1106.1445v7

  23. Holevo, A.S.: Entanglement-breaking channels in infinite dimensions. Probl. Inf. Transm. 44(3), 171–184 (2008). arXiv:0802.0235

    Article  MathSciNet  MATH  Google Scholar 

  24. Giovannetti, V., García-Patrón, R., Cerf, N.J., Holevo, A.S.: Ultimate classical communication rates of quantum optical channels. Nat. Photonics 8(10), 796–800 (2014). arXiv:1312.6225

    Article  ADS  Google Scholar 

  25. Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77(4), 1225–1256 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Brádler, K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory 57(8), 5497–5503 (2011). arXiv:0903.1638

    Article  MathSciNet  MATH  Google Scholar 

  27. Fan, H., Wang, Y.-N., Jing, L., Yue, J.-D., Shi, H.-D., Zhang, Y.-L., Liang-Zhu, M.: Quantum cloning machines and the applications. Phys. Rep. 544(3), 241–322 (2014). arXiv:1301.2956

    Article  ADS  MathSciNet  Google Scholar 

  28. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005). arXiv:quant-ph/0311131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z.: Estimating mutual information via Kolmogorov distance. IEEE Trans. Inf. Theory 53(9), 3280–3282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Audenaert, K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 40(28), 8127 (2007). arXiv:quant-ph/0610146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016). arXiv:1507.07775

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shor, P.W.: Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the Occasion of his 60th Birthday): The Classical Capacity achievable by a Quantum Channel assisted by Limited Entanglement. Rinton Press, Inc., Princeton (2004). arXiv:quant-ph/0402129

    Google Scholar 

  33. Hsieh, M.-H., Devetak, I., Winter, A.: Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans. Inf. Theory 54(7), 3078–3090 (2008). arXiv:quant-ph/0511228

    Article  MathSciNet  MATH  Google Scholar 

  34. Beigi, S., Gohari, A.: On dimension bounds for auxiliary quantum systems. IEEE Trans. Inf. Theory 60(1), 368–387 (2014). arXiv:1207.3911

    Article  MathSciNet  MATH  Google Scholar 

  35. Smith, G., Smolin, J.A., Winter, A.: The quantum capacity with symmetric side channels. IEEE Trans. Inf. Theory 54(9), 4208–4217 (2008). arXiv:quant-ph/0607039

    Article  MathSciNet  MATH  Google Scholar 

  36. Smith, G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78(2), 022306 (2008). arXiv:0705.3838

    Article  ADS  Google Scholar 

  37. Brandão, F.G.S.L., Oppenheim, J.: Quantum one-time pad in the presence of an eavesdropper. Phys. Rev. Lett. 108(4), 040504 (2012). arXiv:1004.3328

    Article  ADS  Google Scholar 

  38. Takeoka, M., Guha, S., Wilde, M.M.: The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60(8), 4987–4998 (2014). arXiv:1310.0129

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Haoyu Qi for discussions related to the topic of this paper. QLW is supported by the NFSC (Grants Nos. 61272057, 61309029 and 61572081) and funded by the China Scholarship Council (Grant No. 201506470043). SD acknowledges support from the LSU Graduate School Economic Development Assistantship. MMW acknowledges support from the NSF under Award No. CCF-1350397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Das, S. & Wilde, M.M. Hadamard quantum broadcast channels. Quantum Inf Process 16, 248 (2017). https://doi.org/10.1007/s11128-017-1697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1697-5

Keywords

Navigation