Skip to main content
Log in

Advancing quantum broadcast performance in noisy environments: a generalized approach with 4n-qubit cluster states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study presents two quantum broadcast protocols for the transmission of two qubits utilizing cluster states as the quantum channel to two receivers. In the first simplified case of the protocol, two-qubit cluster states are transmitted using an eight-qubit quantum channel. In the generalized scheme, users receive 2n-qubit cluster states via 8n-qubits quantum channel. The mathematical description of both protocols are described in details. Furthermore, we investigate and analyze the effect of amplitude-damping, phase-damping and bit-flip noisy channels on the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Bohm, D.: Quantum theory. Courier Corporation (1951)

    Google Scholar 

  2. Peres, A.: Quantum theory: concepts and methods. Springer Science & Business Media, Berlin (1993)

    Google Scholar 

  3. Houshmand, M., Mohammadi, Z., Zomorodi, M.M., Houshmand, M.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59, 1315–1329 (2020)

    Article  MathSciNet  Google Scholar 

  4. Khrennikov, A.: Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found. Phys. 50(12), 1762–1780 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  5. Mousavi, M., Houshmand, M., Bolokian, M.: The cost reduction of distributed quantum factorization circuits. Int. J. Theor. Phys. 60, 1292–1298 (2021). https://doi.org/10.1007/s10773-021-04756-6

    Article  MathSciNet  Google Scholar 

  6. Kazemikhah, P., Aghababa, H.: Bidirectional quantum teleportation of an arbitrary number of qubits by using four qubit cluster state. Int. J. Theor. Phys. 60, 378–386 (2021). https://doi.org/10.1007/s10773-020-04704-w

    Article  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bolokian, M., Houshmand, M., Sadeghizadeh, M.-S., Parvaneh, M.: Multi-party quantum teleportation with selective receiver. Int. J. Theor. Phys. 60, 828–837 (2021). https://doi.org/10.1007/s10773-020-04702-y

    Article  MathSciNet  Google Scholar 

  9. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016). https://doi.org/10.1007/s11128-015-1096-8

    Article  MathSciNet  ADS  Google Scholar 

  10. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). https://doi.org/10.1007/s10773-017-3353-3

    Article  MathSciNet  Google Scholar 

  11. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using $$2n$$Bell states as quantum channel. Opt. Quantum Electron. 54, 568 (2022). https://doi.org/10.1007/s11082-022-03951-x

    Article  Google Scholar 

  12. Chen, J., Li, D., Liu, M., Yang, Y.: Bidirectional quantum teleportation by using a four-qubit GHZ state and two bell states. IEEE Access. 8, 28925–28933 (2020). https://doi.org/10.1109/ACCESS.2020.2971973

    Article  Google Scholar 

  13. Sang, M.: huang: bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55, 1333–1335 (2016). https://doi.org/10.1007/s10773-015-2774-0

    Article  Google Scholar 

  14. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). https://doi.org/10.1007/s10773-014-2065-1

    Article  Google Scholar 

  15. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015). https://doi.org/10.1007/s10773-014-2221-7

    Article  Google Scholar 

  16. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58, 3594–3601 (2019). https://doi.org/10.1007/s10773-019-04223-3

    Article  MathSciNet  Google Scholar 

  17. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Efficient controlled quantum broadcast protocol using 6n-qubit cluster state in noisy channels. Opt. Quantum Electron. 55, 653 (2023). https://doi.org/10.1007/s11082-023-04928-0

    Article  Google Scholar 

  18. Heinosaari, T., Jenčová, A., Plávala, M.: Dispensing of quantum information beyond no-broadcasting theorem—is it possible to broadcast anything genuinely quantum? J. Phys. A Math. Theor. 56(13), 135301 (2023). https://doi.org/10.1088/1751-8121/acbc5b

    Article  MathSciNet  ADS  Google Scholar 

  19. Li, Y., Nie, L., Li, X., Sang, M.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016). https://doi.org/10.1007/s10773-016-2933-y

    Article  Google Scholar 

  20. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 qubit teleportation protocol between alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

    Article  MathSciNet  Google Scholar 

  21. Kazemikhah, P., Tabalvandani, M.B., Yousef Mafi, H.A.: Asymmetric bidirectional controlled quantum teleportation using eight qubit cluster state. Int. J. Theor. Phys. (2022). https://doi.org/10.1007/s10773-022-04995-1

    Article  MathSciNet  Google Scholar 

  22. Wang, J., Zhang, Q., Tang, C.J.: Quantum broadcast communication. Chinese Phys. 16, 1868 (2007). https://doi.org/10.1088/1009-1963/16/7/011

    Article  ADS  Google Scholar 

  23. Chang, Y., Xu, C.-X., Zhang, S.-B., Yan, L.-L.: Quantum broadcast communication and authentication protocol with a quantum one-time pad. Chinese Phys. B. 23, 010305 (2014). https://doi.org/10.1088/1674-1056/23/1/010305

    Article  ADS  Google Scholar 

  24. Yu-Guang, Y., Ye-Hong, W., Qiao-Yan, W.: Quantum broadcast communication with authentication. Chin. Phys. B 19(7), 070304 (2010). https://doi.org/10.1088/1674-1056/19/7/070304

    Article  ADS  Google Scholar 

  25. Cao, Y., Gao, F.: Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad. Chin. Phys. B 25(11), 110305 (2016). https://doi.org/10.1088/1674-1056/25/11/110305

    Article  ADS  Google Scholar 

  26. Peng, J.Y., Yang, Z., Tang, L., Peng, J.S.: Controlled quantum broadcast and multi-cast communications of complex coefficient single-qubit states. Quantum Inf. Process. 21(8), 287 (2022). https://doi.org/10.1007/s11128-022-03629-z

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhao, N., Li, W., Yu, Y.: Quantum broadcast and multicast schemes based on partially entangled channel. IEEE Access 8, 29658–29666 (2020). https://doi.org/10.1109/ACCESS.2020.2972693

    Article  Google Scholar 

  28. Hillery, M., Bergou, J.A., Wei, T.C., Santra, S., Malinovsky, V.: Broadcast of a restricted set of qubit and qutrit states. Phys. Rev. A 105(4), 042611 (2022). https://doi.org/10.1103/PhysRevA.105.042611

    Article  MathSciNet  ADS  Google Scholar 

  29. Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglement. Opt. Express 26(22), 29296–29310 (2018). https://doi.org/10.1364/OE.26.029296

    Article  ADS  Google Scholar 

  30. Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., Talebi, S.: Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf. Process. 20, 1–18 (2021). https://doi.org/10.1007/S11128-021-03088-Y/METRICS

    Article  MathSciNet  Google Scholar 

  31. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2456-6

    Article  MathSciNet  Google Scholar 

  32. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Efficient controlled quantum broadcast protocol using 6 n-qubit cluster state in noisy channels. Opt. Quant. Electron. 55(7), 653 (2023). https://doi.org/10.1007/s11082-023-04928-0

    Article  Google Scholar 

  33. Yu, Y., Zha, X.W., Li, W.: Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state. Quantum Inf. Process. 16, 1–9 (2017). https://doi.org/10.1007/S11128-016-1500-Z/METRICS

    Article  ADS  Google Scholar 

  34. Zhou, Y.J., Tao, Y.H.: Probabilistic broadcast-based multiparty remote state preparation scheme via four-qubit cluster state. Int. J. Theor. Phys. 57, 549–553 (2018). https://doi.org/10.1007/s10773-017-3587-0

    Article  MathSciNet  Google Scholar 

  35. Kumar, S., & Pathak, A.: Many facets of multiparty broadcasting of known quantum information using optimal quantum resource. arXiv preprint arXiv:2305.00389, (2023). https://doi.org/10.48550/arXiv.2305.00389

  36. Jami, S., Houshmand, M.: Quantum broadcast and multicast with non-maximally channels. Modern Phys. Lett. A 38(12n13), 2350059 (2023). https://doi.org/10.1142/S0217732323500591

    Article  MathSciNet  ADS  Google Scholar 

  37. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  38. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537–542 (2003). https://doi.org/10.1088/0253-6102/39/5/537

    Article  MathSciNet  ADS  Google Scholar 

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary Cambridge University Press, Cambridge (2010)

    Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MB involved in conceptualization, writing—original draft, quantum computing, and software. AAO involved in supervision—review and editing. MH involved in supervision, advisor, and review and editing.

Corresponding author

Correspondence to Ali A. Orouji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Human or animal rights

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokian, M., Orouji, A.A. & Houshmand, M. Advancing quantum broadcast performance in noisy environments: a generalized approach with 4n-qubit cluster states. Quantum Inf Process 23, 85 (2024). https://doi.org/10.1007/s11128-024-04293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04293-1

Keywords

Navigation