Skip to main content
Log in

Cryptanalysis and improvement of a quantum private set intersection protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A recent Quantum Private Set Intersection (QPSI) scheme is crypt-analyzed. The original claimed communication overhead is shown to be not accurate. And the original security definition is passive and not fair. To ensure fairness, a passive third party is introduced. It is also shown that unconditional fairness of QPSI protocol is impossible. Since otherwise, it would violate a well-known impossible quantum cryptography result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. Proceedings of EUROCRYPT, LNCS 3027, 1–19 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Chun, J.Y., Hong, D., Jeong, I.R., Lee, D.H.: Privacy-preserving disjunctive normal form operations on distributed sets. Inform. Sci. 231(10), 113–122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pervez, Z., Awan, A.A., Khattak, A.M., Lee, S., Huh, E.N.: Privacy-aware searching with oblivious term matching for cloud storage. J. Supercomput. 63(2), 538–560 (2013)

    Article  Google Scholar 

  4. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: Proceedings of the Network and Distributed System Security Symposium (NDSS 2011) (2011)

  5. Zhan, J., Cabrera, L., Osman, G., Shah, R.: Using private matching for securely querying genomic sequences. In: Proceedings of IEEE Third International Conference on Privacy, Security Risk and Trust (passat) and Third International Conference on Social Computing (socialcom), pp. 1163–1168 (2011)

  6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pp. 124–134, Santa Fe, NM, (1994)

  7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and newcryptographic constructions. In: STOC, STOC, pp. 197–206 (2008)

  8. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  9. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  10. Wu, M.E., Chang, S.Y., Lu, C.J., Sun, H.M.: A communication-efficient private matching scheme in client-server model. Inform. Sci. 275(10), 348–359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lo, H., Ko, T.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, (2005)

  12. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  13. Pacher, C., Abidin, A., Lornser, T., Peev, M., Ursin, R., Zeilinger, A., Larsson, J.-A.: Attacks on quantum key distribution protocols that employ non-its authentication. Quantum Inf. Process. 15(1), 327–362 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on quantum key distribution without alternative measurements. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  15. Gao, F., Qin, S., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the qsdc protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008)

    Article  ADS  Google Scholar 

  17. Gao, F., Qin, S., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  18. Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491–495 (2010)

    Article  ADS  Google Scholar 

  19. Qin, S., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Wjcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  21. Wjcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  22. Cai, Q.Y.: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  23. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  24. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748–750 (2007)

    Article  ADS  Google Scholar 

  25. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-ender versus n-receiver qsdc protocol. Chin. Phys. Lett. 25, 1561–1563 (2008)

    Article  ADS  Google Scholar 

  26. Gao, F., Qin, S., Wen, Q., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  27. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282, 4167–4170 (2009)

    Article  ADS  Google Scholar 

  28. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10, 317–323 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-keydistribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  30. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  31. Song, X.L., Liu, Y.B.: Cryptanalysis and improvement of verifiable quantum (k, n) secret sharing. Quantum Inf. Process. 15(2), 851–868 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shi, R., Yi, M., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for private set intersection. Quantum Inf. Process. 15(1), 363–371 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  34. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: ACNS 2009, LNCS 5536, pp. 125–142, (2009)

  35. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)

    Article  ADS  Google Scholar 

  36. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)

    Article  ADS  Google Scholar 

  37. Wehner, S., Schaffner, C., Terhal, B.M.: Cryptography from noisy storage. Phys. Rev. Lett. 100, 220502 (2008)

    Article  ADS  Google Scholar 

  38. Damgard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-storage model. SIAM J. Comput. 37, 1865–1890 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14, 4593–4600 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Chakraborty, K., Chailloux, A., Leverrier, A.: Arbitrarily long relativistic bit commitment. Phys. Rev. Lett. 115, 250501 (2015)

    Article  ADS  Google Scholar 

  41. Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  42. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)

    Article  Google Scholar 

  43. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Qkd-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  Google Scholar 

  44. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful and valuable suggestions. This work was supported by the National Natural Science Foundation of China (61370007), the Natural Science Foundation of Fujian Province (2016J01336), and the Scientific Research Funds of Huaqiao University (16BS309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Guo, R. & Chen, Y. Cryptanalysis and improvement of a quantum private set intersection protocol. Quantum Inf Process 16, 37 (2017). https://doi.org/10.1007/s11128-016-1502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1502-x

Keywords

Navigation