Skip to main content
Log in

Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

New stabilizer codes with parameters better than the ones available in the literature are provided in this work, in particular quantum codes with parameters \([[127,63, {\ge }12]]_2\) and \([[63,45, {\ge }6]]_4\) that are records. These codes are constructed with a new generalization of the Steane’s enlargement procedure and by considering orthogonal subfield-subcodes—with respect to the Euclidean and Hermitian inner product—of a new family of linear codes, the J-affine variety codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53, 1183–1188 (2007)

    Article  Google Scholar 

  2. Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bian, Z., et al.: Experimental determination of Ramsey numbers. Phys. Rev. Lett. 111, 130505 (2013)

    Article  ADS  Google Scholar 

  6. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bras-Amorós, M., O’Sullivan, M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2, 15–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  9. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calderbank, A.R., Shor, P.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  11. Delsarte, P.: On subfield subcodes of modified Reed–Solomon codes. IEEE Trans. Inf. Theory IT–21, 575–576 (1975)

    Article  MathSciNet  Google Scholar 

  12. Dieks, D.: Communication by EPR devices. Phys. Rev. A 92, 271 (1982)

    Google Scholar 

  13. Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585 (1996)

    Article  ADS  Google Scholar 

  14. Edel, Y.: Some good quantum twisted codes. http://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html

  15. Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59, 6732–6754 (2013)

    Article  MathSciNet  Google Scholar 

  16. Feng, K.: Quantum error correcting codes. In: Niederreiter H (ed.) Coding Theory and Cryptology, pp. 91–142. Word Scientific, Singapore (2002). http://www.worldscientific.com/worldscibooks/10.1142/5078

  17. Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Galindo, C., Hernando, F.: Quantum codes from affine variety codes and their subfield subcodes. Des. Codes Crytogr. 76, 89–100 (2015)

    Article  MathSciNet  Google Scholar 

  20. Galindo, C., Hernando, F., Ruano, D. New QuantumCodes from Evaluation and Matrix-Product Codes. arXiv:1406.0650

  21. Galindo, C., Monserrat, F.: Delta-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Galindo, C., Monserrat, F.: Evaluation codes defined by finite families of plane valuations at infinity. Des. Codes Crytogr. 70, 189–213 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Geil, O.: Evaluation codes from an affine variety code perspective. Advances in algebraic geometry codes, Ser. Coding Theory Cryptol. 5, 153-180 (2008) World Sci. Publ., Hackensack, NJ. Eds.: E. Martinez-Moro, C. Munuera, D. Ruano

  24. Geil, O.: Evaluation codes from order domain theory. Finite Fields Appl. 14, 92–123 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Geil, O., Matsumoto, R., Ruano, D.: Feng–Rao decoding of primary codes. Finite Fields Appl. 23, 35–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  27. Grassl, M.: Bounds on the minimum distance of linear codes. http://www.codetables.de. Accessed 15th Feb 2015

  28. Grassl, M., Rötteler, M.: Quantum BCH codes. In Proceedingss of the X International Symposium on Theoretical Electrical Engineering. Germany, pp. 207-212 1999

  29. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)

    Article  Google Scholar 

  30. Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54, 5689–5704 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)

    Article  MathSciNet  Google Scholar 

  32. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  34. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)

    Article  Google Scholar 

  35. La Guardia, G.G., Palazzo, R.: Constructions of new families of nonbinary CSS codes. Discrete Math. 310, 2935–2945 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Magma Computational Algebra System. http://magma.maths.usyd.edu.au/magma/

  37. Marcolla, C., Orsini, E., Sala, M.: Improved decoding of affine-variety codes. J. Pure Appl. Algebra 216, 147–158 (2012)

    Article  MathSciNet  Google Scholar 

  38. Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for \(p^m\) state systems from classical error correcting codes. IEICE Trans. Fundam. E83–A, 1878–1883 (2000)

    Google Scholar 

  39. Matsumoto, R., Uyematsu, T.: Lower bound for the quantum capacity of a discrete memoryless quantum channel. J. Math. Phys. 43, 4391–4403 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Sarvepalli, P.K., Klappenecker, A.: Nonbinary quantum Reed–Muller codes. In: Proceedings of the 2005 International Symposium on Information Theory, pp. 1023-1027

  41. Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465, 1645–1672 (2000)

    Article  ADS  Google Scholar 

  42. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations on Computer Scence. pp. 124–134, IEEE Comp. Soc. Press (1994)

  43. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  44. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  45. Smith, G., Smolin, J.: Putting, “quantumness” to the test. Physics 6, 105 (2013)

    Article  Google Scholar 

  46. Steane, A.M.: Simple quantum error correcting codes. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  50. Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE Trans. Inf. Theory 59, 5179–5185 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ryutaroh Matsumoto and the anonymous reviewers for helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hernando.

Additional information

Supported by the Spanish Ministry of Economy: Grant MTM2012-36917-C03-03, the University Jaume I: Grant PB1-1B2012-04, the Danish Council for Independent Research, Grant DFF-4002-00367 and the “Program for Promoting the Enhancement of Research Universities” at Tokyo Institute of Technology.

Appendix

Appendix

We devote this appendix to prove Theorem 3 which was stated in the introduction and preliminaries of this paper. To do this, we adapt to our purposes some facts described in [48] and [30]. Consider the vector space \({\mathbb {F}}_q^{2n}\) and the symplectic inner product \((\mathbf {u}|\mathbf {v}) \cdot _s (\mathbf {u}'|\mathbf {v}') = \mathbf {u} \cdot \mathbf {v}' - \mathbf {v} \cdot \mathbf {u}'\). Recall that the weight \(\mathrm {w}(\mathbf {u}|\mathbf {v})\) of a word \((\mathbf {u}|\mathbf {v})\) as above is the number of indexes i, \(1 \le i \le n\), such that either \(u_i\) or \(v_i\) (or both) are not zero, where the \(u_i\) (respectively, \(v_i\)) represent the coordinates of the vector \(\mathbf {u}\) (respectively, \(\mathbf {v}\)). Following [2] (see also [9]), to get our stabilizer code, we only need to find a vector subspace S in \({\mathbb {F}}_q^{2n}\) such that \(S^{\perp _s} \subseteq S\) with dimension \(k_2 + \hat{k}_1\) and minimum distance larger than or equal to that stated in the statement. Let us describe it. Set \(G_1\) (\(\hat{G}_1\), L, respectively) generator matrices of the codes \(C_1\) (\(\hat{C}_1\), D, respectively) and let S be the code of \({\mathbb {F}}_q^{2n}\) generated by the matrix

$$\begin{aligned} \left( \begin{array}{cc} L &{} AL \\ G_1 &{} 0 \\ 0 &{} \hat{G}_1 \\ \end{array} \right) , \end{aligned}$$

where A is a fixed point free square matrix (see [30, 48] for its existence). Our hypotheses imply \(\hat{k}_1 + k_2 = k_1 + \hat{k}_2\) and that the rows of the previous matrix are linearly independent, therefore, for computing the dimension of S, it suffices to see that the number of rows is \(k_2 -k_1 + k_1 + \hat{k}_1 = k_2 + \hat{k}_1\).

Table 16 Defining sets of the codes over \({\mathbb {F}}_7\) in Table 15

Let \(H_2\) (\(\hat{H}_2\), respectively) be a parity check matrix of the code \(C_2\) (\(\hat{C}_2\), respectively), one can found a matrix B such that

$$\begin{aligned} \left( \begin{array}{c} H_2 \\ B \\ \end{array} \right) , \left( \left( \begin{array}{c} \hat{H}_2 \\ B \\ \end{array} \right) , \mathrm {respectively} \right) \end{aligned}$$

is a parity check matrix for \(C_1\) (respectively, for \(\hat{C}_1\)). Now defining the matrix \(K= BL^t (A^t)^{-1} (B L^t)^{-1}\), it is not difficult to prove that

$$\begin{aligned} \left( \begin{array}{cc} KB &{} B \\ \hat{H}_2 &{} 0 \\ 0 &{} H_2 \\ \end{array} \right) , \end{aligned}$$

is a parity check matrix for the code S and therefore one has that \(S^{\perp _s} \subseteq S\).

To end our proof, it only remains to study what happens with the weight \(\mathrm {w}(\mathbf {u}|\mathbf {v})\) for elements \((\mathbf {u}|\mathbf {v}) \in S\). First assume \(q=2\), a generic element in S has the form \((\mathbf {v}_1 L +\mathbf {v}_2 G_1 | \mathbf {v}_1 AL +\mathbf {v}_3 \hat{G}_1)\), where \(\mathbf {v}_1, \mathbf {v}_2, \mathbf {v}_3\) are suitable vectors with coordinates in \({\mathbb {F}}_q\). When \(\mathbf {v}_1\) is the zero vector, \(\mathbf {u}\) must be in \(C_1\) and \(\mathbf {v}\) in \(\hat{C}_1\), which proves that, in this case, \(\mathrm {w}(\mathbf {u}|\mathbf {v})\) must be larger than or equal to the minimum of the values \(d_1\) and \(\hat{d}_1\). Otherwise, \(\mathbf {v}_1 \ne \mathbf {0}\), one can use the property

$$\begin{aligned} w(\mathbf {u}|\mathbf {v}) = \frac{{\mathrm {wt}}(\mathbf {u})+ {\mathrm {wt}}(\mathbf {v}) + {\mathrm {wt}}(\mathbf {u}+\mathbf {v})}{2}, \end{aligned}$$

where \({\mathrm {wt}}\) denotes the standard weight of a word in a code in \({\mathbb {F}}_q^n\), and this concludes the proof since \(\mathbf {u} \in C_2\), \(\mathbf {v} \in \hat{C}_2\), \(\mathbf {u}+\mathbf {v} \in C_3\) and the fact that \((C_1 + \hat{C}_1) \cap D = \{\mathbf {0}\}\) implies that none of the previous vectors are zero.

Let us consider \(q \ne 2\), we will only study \(w(\mathbf {u}|\mathbf {v})\) for \(\mathbf {v}_1 \ne 0\). For convenience, assume that the coordinates \(u_{t+1}, u_{t+2}, \ldots , u_n\) of the word \(\mathbf {u}\) are zero and that this does not happen with the remaining coordinates. As showed in [30], there exists \(\lambda \in {\mathbb {F}}_q\) such that

$$\begin{aligned} w(\mathbf {u}|\mathbf {v}) = t + {\mathrm {wt}} (v_{t+1}, v_{t+2}, \ldots , v_n ) \ge {\mathrm {wt}}(\mathbf {v} - \lambda \mathbf {u}) + \frac{{\mathrm {wt}}(\mathbf {u})}{q} \end{aligned}$$

and, symmetrically, \(w(\mathbf {u}|\mathbf {v}) \ge {\mathrm {wt}}(\mathbf {u} - \lambda ' \mathbf {v}) + \frac{{\mathrm {wt}}(\mathbf {v})}{q}\), for some \(\lambda ' \in {\mathbb {F}}_q\), holds. This finishes the proof because, as before, our hypotheses imply that \(\mathbf {0} \ne \mathbf {v} - \lambda \mathbf {u}\) and \(\mathbf {0} \ne \mathbf {u} - \lambda ' \mathbf {v}\) belong to \(C_3\), \(\mathbf {0} \ne \mathbf {u} \in C_2\) and \(\mathbf {0} \ne \mathbf {v} \in \hat{C}_2\).

Remark 3

Notice that the Hamada’s generalization of the Steane’s enlargement, Theorem 2 in this work, is a particular case of Theorem 3 that holds when \(C_1 = \hat{C}_1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo, C., Hernando, F. & Ruano, D. Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement. Quantum Inf Process 14, 3211–3231 (2015). https://doi.org/10.1007/s11128-015-1057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1057-2

Keywords

Navigation