Skip to main content
Log in

Quantum codes from affine variety codes and their subfield-subcodes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We use affine variety codes and their subfield-subcodes to obtain quantum stabilizer codes via the CSS code construction. With this procedure we get codes with good parameters, some of them exceeding the CSS quantum Gilbert–Varshamov bound given by Feng and Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly S.A., Klappenecker A., Sarpevally P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53, 1183–1188 (2007).

  2. Ashikhmin A., Knill E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001).

  3. Ashikhmin A., Litsyn S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45, 1206–1215 (1999).

  4. Bras-Amorós M., O’Sullivan M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2, 15–33 (2008).

  5. Bierbrauer J., Edel Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000).

  6. Calderbank A.R., Shor P.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

  7. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).

  8. Delsarte P.: On subfield subcodes of modified Reed–Solomon codes. IEEE Trans. Inf. Theory IT–21, 575–576 (1975).

  9. Edel Y.: Some good quantum twisted codes. Online available at http://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html. Based on reference [5].

  10. Ezerman M.F., Jitman S., Ling S., Pasechnik D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59, 6732–6754 (2013).

  11. Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004).

  12. Feng K., Ling S., Xing C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52, 986–991 (2006).

  13. Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998).

  14. Geil O.: Evaluation codes from an affine variety code perspective. In: Martinez-Moro, E., Munuera, C., Ruano, D. (eds.) Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., vol. 5, pp. 153–180. World Sci. Publ., Hackensack (2008).

  15. Geil O., Martin S.: An improvement of the Feng–Rao bound for primary codes. arXiv:1307.3107.

  16. Gottesman D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996).

  17. Grassl M., Beth T., Rötteler M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004).

  18. Hagiwara M., Imai H.: Quantum quasi-cyclic LDPC codes. Inf. Theory Proc. (ISIT), pp. 806–810 (2007).

  19. Hernando F., O’Sullivan M.E., Popovici E., Srivastava S.: Subfield-subcodes of generalized toric codes. Information Theory Proc. (ISIT), pp. 1125–1129 (2010).

  20. Hernando F., Marshall K., O’Sullivan M.E.: The dimension of subcode-subfields of shortened generalized Reed–Solomon codes. Des. Codes Cryptogr. 69, 131–142 (2013).

  21. Kasai K., Hagiwara M., Imai H., Sakaniwa K.: Non-binary quasi-cyclic quantum LDPC codes. Inf. Theory Proc. (ISIT), pp. 653–657 (2011).

  22. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006).

  23. La Guardia G.G.: Construction of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331-1–042331-11 (2009).

  24. La Guardia G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014).

  25. Magma Computational Algebra System. http://magma.maths.usyd.edu.au/magma/.

  26. Martínez-Moro E.: On semisimple algebra codes: generator theory. Algebra Discret. Math. 3, 99–112 (2007).

  27. Martínez-Moro E., Piñera-Nicolás A., Rúa I.F.: Additive semisimple multivariable codes over \(\mathbb{F}_4\). Des. Codes Cryptogr. 69, 161–180 (2013).

  28. Rains E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45, 1827–1832 (1999).

  29. Ruano D.: On the structure of generalized toric codes. J. Symb. Comput. 44, 499–506 (2009).

  30. Shor P.W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, pp. 124–134 (1994).

  31. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995).

  32. Steane A.M.: Simple quantum error correcting codes. Phys. Rev. Lett. 77, 793–797 (1966).

  33. Stichtenoth H.: On the dimension of subfield subcodes. IEEE Trans. Inf. Theory 36, 90–93 (1990).

  34. Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982).

Download references

Acknowledgments

This study was supported by Spain Ministry of Economy MTM2012-36917-C03-03 and University Jaume I: PB1-1B2012-04. The authors would like to thank three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hernando.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Computer Algebra in Coding Theory and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo, C., Hernando, F. Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr. 76, 89–100 (2015). https://doi.org/10.1007/s10623-014-0016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-0016-8

Keywords

Mathematics Subject Classification

Navigation