Skip to main content
Log in

Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, an orthogonal-state-based protocol of direct quantum communication without actual transmission of particles is proposed by Salih et al. (Phys Rev Lett 110:170502, 2013) using chained quantum Zeno effect. The counterfactual condition (claim) of Salih et al. is weakened here to the extent that transmission of particles is allowed, but transmission of the message qubits (the qubits on which the secret information is encoded) is not allowed. Remaining within this weaker (non-counterfactual) condition, an orthogonal-state-based protocol of deterministic secure quantum communication is proposed using entanglement swapping, where actual transmission of the message qubits is not required. Further, it is shown that there exists a large class of quantum states that can be used to implement the proposed protocol. The security of the proposed protocol originates from monogamy of entanglement. As the protocol can be implemented without using conjugate coding, its security is independent of non-commutativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)

    Article  ADS  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  9. Degiovanni, I.P., Berchera, I.R., Castelletto, S., Rastello, M.L., Bovino, F.A., Colla, A.M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)

    Article  ADS  Google Scholar 

  10. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  11. Jun, L., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)

    Article  ADS  Google Scholar 

  12. Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  13. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  14. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  15. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Euro. Phys. J. D 61, 785–790 (2011)

    Article  ADS  Google Scholar 

  16. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  17. Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)

    Article  ADS  Google Scholar 

  18. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403–2409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Long, G., Deng, F., Wang, C., Li, X., Wen, K., Wang, W.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  20. Yadav, P., Srikanth, R., Pathak, A.: Generalization of the Goldenberg–Vaidman QKD Protocol. arXiv:1209.4304

  21. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)

    Article  MathSciNet  Google Scholar 

  22. Guo, G.-C., Shi, B.-S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256, 109–112 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  23. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)

    Article  ADS  Google Scholar 

  24. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)

    Article  ADS  Google Scholar 

  26. Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)

    Article  ADS  Google Scholar 

  27. Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)

    Article  ADS  Google Scholar 

  28. Liu, Y., Ju, L., Liang, X.L., Tang, S.B., Tu, G.-L., Zhou, L., Peng, C.Z., Chen, K., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

    Article  ADS  Google Scholar 

  29. Salih, H., Li, Z.-H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 170502 (2013)

    Article  ADS  Google Scholar 

  30. Vaidman, L.: Comment on “Protocol for direct counterfactual quantum communication”. Phys. Rev. Lett. 112, 208901 (2014)

  31. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)

    Article  ADS  Google Scholar 

  32. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)

    Article  MathSciNet  Google Scholar 

  33. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  34. Zhang, Q., Li, C., Li, Y., Nie, Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)

    Article  ADS  Google Scholar 

  36. Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80, 3137–3140 (1998)

    Article  ADS  Google Scholar 

  37. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389–403 (2011)

    Article  MATH  Google Scholar 

  38. Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B 39, 3855–3863 (2006)

    Article  ADS  Google Scholar 

  39. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

AP thanks Department of Science and Technology (DST), India for support provided through the DST Project No. SR/S2/LOP-0012/2010, and he also acknowledges the supports received from the Projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic. The authors also thank Dr. R. Srikanth for some useful technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, C., Pathak, A. Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf Process 13, 2099–2113 (2014). https://doi.org/10.1007/s11128-014-0792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0792-0

Keywords

Navigation