Skip to main content
Log in

Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate that a four-qubit cluster state can be used to realize the deterministic quantum state sharing (QSTS) of an arbitrary four-qubit GHZ-type state among three parties by introducing three ancillary qubits and performing three controlled-NOT operations. In our scheme, any one of the two agents has the ability to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein Podolsky Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  4. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  5. Hou K., Li Y.B., Shi S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)

    Article  ADS  Google Scholar 

  6. Choudhury S., Muralidharan S., Panigrahi P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  8. Dong P., Xue Z.Y., Yang M., Cao Z.L.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)

    Article  ADS  Google Scholar 

  9. Hein M., Dür W., Briegel H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71(3), 032350 (2005)

    Article  ADS  Google Scholar 

  10. Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65(1), 012308 (2001)

    Article  ADS  Google Scholar 

  11. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)

    Article  ADS  Google Scholar 

  12. Walther P., Resch K.J., Rudolph T., Schenck E., Weinfurter H., Vedral V., Aspelmeyer M., Zeilinger A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  13. Muralidharan S., Panigrahi P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  14. Lu C.Y., Zhou X.Q., Guhne O.W.B., Gao W.B., Zhang J., Yuan Z.S., Goebel A., Yang T., Pan J.W.: Experimental entanglement of six photons in graph states. Nature 3, 91–95 (2007)

    Google Scholar 

  15. Zhan Z.M.: Preparation of cluster states for many atoms in cavity QED. Commun. Theor. Phys. 48(1), 83–86 (2007)

    Article  Google Scholar 

  16. Wang X.W., Cao S., Xia L.X.: Two feasible schemes for preparing cluster states with ion-trap setup. Commun. Theor. Phys. 49(5), 1217–1220 (2008)

    Article  ADS  Google Scholar 

  17. Zhang B.B., Liu Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48(9), 2644–2651 (2009)

    Article  MATH  Google Scholar 

  18. Nie Y.Y., Hong Z.H., Huang Y.B., Yi X.J., Li S.S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48(5), 1485–1490 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. arXiv.org/abs/0904.0563v2 (2009)

  20. Wang X.W., Yang G.J.: Generation of a four-particle cluster state and perfect teleportation of an arbitrary two-particle state in an ion-trap system. Commun. Theor. Phys. 52(4), 588–592 (2009)

    Article  ADS  MATH  Google Scholar 

  21. Wang X.W., Shan Y.G., Xia L.X., Lu M.W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364(1), 7–11 (2007)

    Article  ADS  MATH  Google Scholar 

  22. Li Q., Chan W.H., Long D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  23. Pittman T.B., Jacobs B.C., Franson J.D.: Demonstration of quantum error correction using linear optics. Phys. Rev. A 71(5), 052332 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-you Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Yy., Li, Yh., Liu, Jc. et al. Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf Process 10, 603–608 (2011). https://doi.org/10.1007/s11128-010-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0220-z

Keywords

Navigation