Skip to main content
Log in

Quantum state transfer with a two-dimensional Cooper-pair box qubit array

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A theoretical scheme is proposed to transfer quantum state with a two-dimensional Cooper-pair box qubit array in circuit QED devices, in which coplanar transmission line resonators play the role of a quantum data bus. Based on the Raman transitions, the resonator-assisted quantum state transfer between any selected pair of qubits can be performed by addressing the local gate pulses. Thus the scheme may offer an effective route towards scalable quantum state transfer with superconducting qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke J., Wilhelm F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  2. Devoret M.H., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163 (2004)

    Article  MATH  Google Scholar 

  3. Knill E.: Quantum computing. Nature 463, 441 (2010)

    Article  ADS  Google Scholar 

  4. Vion D. et al.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  5. You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  6. Zhu S.L., Wang Z.D., Zanardi P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Feng Z.B., Zhang Y.M., Wang G.Z., Han H.: Detecting non-Abelian geometric phases with superconducting nanocircuits. Physica E 41, 1859 (2009)

    Article  ADS  Google Scholar 

  8. Yu L.B., Xue Z.Y.: Implementation of a quantum conditional phase gate for the quantum fourier transform in circuit QED. Chin. Phys. Lett. 27, 070305 (2010)

    Article  ADS  Google Scholar 

  9. Wallquist M., Shumeiko V.S., Wendin G.: Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity. Phys. Rev. B 74, 224506 (2006)

    Article  ADS  Google Scholar 

  10. Chen G., Chen Z., Yu L., Liang J.: One-step generation of cluster states in superconducting charge qubits coupled with a nanomechanical resonator. Phys. Rev. A 76, 024301 (2007)

    Article  ADS  Google Scholar 

  11. Feng Z.B.: Coupling charge qubits via Raman transitions in circuit. Phys. Rev. A 78, 032325 (2008)

    Article  ADS  Google Scholar 

  12. Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  13. Sillanpää M.A., Park J.I., Simmonds R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  14. DiCarlo L. et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)

    Article  ADS  Google Scholar 

  15. Helmer F. et al.: Cavity grid for scalable quantum computation with superconducting circuits. Europhys. Lett. 85, 50007 (2009)

    Article  ADS  Google Scholar 

  16. Lin G.W. et al.: Scalable, high-speed one-way quantum computer in coupled-cavity arrays. Appl. Phys. Lett. 95, 224102 (2009)

    Article  ADS  Google Scholar 

  17. Fisher R. et al.: Optimal control of circuit quantum electrodynamics in one and two dimensions. Phys. Rev. B 81, 085328 (2010)

    Article  ADS  Google Scholar 

  18. Wei L.F. et al.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)

    Article  ADS  Google Scholar 

  19. Li P.B., Gu Y., Gong Q.H., Guo G.C.: Quantum information transfer in a coupled resonator waveguide. Phys. Rev. A 79, 042339 (2009)

    Article  ADS  Google Scholar 

  20. Lyakhov A., Bruder C.: Quantum state transfer in arrays of flux qubits. New J. Phys. 7, 181 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wang Y.D., Wang Z.D., Sun C.P.: Quantum storage and information transfer with superconducting qubits. Phys. Rev. B 72, 172507 (2005)

    Article  ADS  Google Scholar 

  22. Wu Q.Q., Liao J.Q., Kuang L.M.: Quantum state transfer between charge and flux qubits in circuit-QED. Chin. Phys. Lett. 25, 1179 (2008)

    Article  ADS  Google Scholar 

  23. Feng Z.B. et al.: Quantum information transfer with Cooper-pair box qubits in circuit QED. Opt. Commun. 283, 1975 (2010)

    Article  ADS  Google Scholar 

  24. Xue Z.Y., Wang Z.D., Zhu S.L.: Physical implementation of topologically decoherence-protected superconducting qubits. Phys. Rev. A 77, 024301 (2008)

    Article  ADS  Google Scholar 

  25. Feng Z.B., Wang H.L., Han H., Yan R.Y.: Scalable quantum computing in decoherence-free subspaces with Cooper-pair box qubits. Phys. Lett. A 374, 539 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Liu Y.X. et al.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  27. Shi Z.G., Chen X.W., Zhu X.X., Song K.H.: Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator. Chin. Phys. B 18, 910 (2009)

    Article  ADS  Google Scholar 

  28. Feng M.: Quantum computing with trapped ions in an optical cavity via Raman transition. Phys. Rev. A 66, 054303 (2002)

    Article  ADS  Google Scholar 

  29. Zhan Z.M., Li W.B.: Posssible realization of cluster states and quantum information transfer in cavity QED via Raman transition. Chin. Phys. Lett. 24, 344 (2007)

    Article  ADS  Google Scholar 

  30. Yang C.P., Chu S.I., Han S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  31. You J.Q., Nakamura Y., Nori F.: Fast two-bit operations in inductively coupled flux qubits. Phys. Rev. B 71, 024532 (2005)

    Article  ADS  Google Scholar 

  32. Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  33. Blais A. et al.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  34. Yao N.Y. et al.: Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, ZB., Yan, RY. & Zhou, YQ. Quantum state transfer with a two-dimensional Cooper-pair box qubit array. Quantum Inf Process 12, 1429–1438 (2013). https://doi.org/10.1007/s11128-011-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0342-y

Keywords

Navigation