Skip to main content
Log in

Efficient representations of digital images on quantum computers

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Quantum image processing is the use of quantum computing to store, transmit, and process digital images on quantum computers. This paper introduces two enhanced quantum image representations to store quantum images. The first enhanced quantum representation based on the flexible representation for quantum images (EFRQI) is an amplitude representation that uses the partial negation operator to store the values of the pixels of \(2^n \times 2^n\) image in the amplitudes of the qubits. The second enhanced quantum representation based on the novel enhanced quantum representation of digital images (ENEQR) is a basis state representation that uses the CNOT gate to store the values of the pixels in a qubit sequence. The proposed methods have better time complexity and quantum cost when compared with related models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avaliani A (2004) Quantum computers. CoRR cs.AI/0405004

  2. Blaschke T, Lang S, Lorup E, Strobl J, Zeil P (2000) Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. Environ Inf Plan Politics Public 2:555–570

    Google Scholar 

  3. Barenco A, Bennett CH, Cleve R, Divincenzo DP, Margolus N, Shor P, Sleator T, Smolin J, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457–3467

    Article  Google Scholar 

  4. Gonzalez RC, Woods RE (2002) Digital image processing 2ndEd. Prentice Hall

  5. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 2–5

  6. Jiang N, Wang L (2015) Quantum image scaling using nearest neighbor interpolation. Quant Inf Process 14(5):1559–1571

    Article  MathSciNet  Google Scholar 

  7. Latorre JI (2005) Image compression and entanglement. CoRR arXiv:quant-ph/0510031

  8. Le PQ, Dong F, Hirota K (2011) A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quant Inf Process 10(1):63–84

    Article  MathSciNet  Google Scholar 

  9. Li HS, Fan P, Xia HY, Peng H, Song S (2019) Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans Circuits Syst I: Reg Papers 66 341–354

  10. Li P, Liu X (2018) Color image representation model and its application based on an improved FRQI. Int J Quant Inf 16:1

    MATH  Google Scholar 

  11. Liu K, Zhang Y, Lu K, Wang X, Wang X (2018) An optimized quantum representation for color digital images. Int J Theor Phys 57(10):2938–2948

    Article  Google Scholar 

  12. Liu X, Xiao D, Huang W, Liu C (2019) Quantum block image encryption based on arnold transform and sine chaotification model. IEEE Access 7:57188–57199

    Article  Google Scholar 

  13. Mandrá S, Guerreschi GG, Aspuru-Guzik A (2016) Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems. New J Phys 18(7):1–25

    Article  Google Scholar 

  14. Maslov D (2014) Reversible benchmarks https://webhome.cs.uvic.ca/~dmaslov

  15. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information 10th, anniversary. Cambridge University Press, New York, NY, USA

    Book  Google Scholar 

  16. Perret B, Lefèvre S, Collet C, Slezak É (2010) Connected component trees for multivariate image processing and applications in astronomy. Proc Int Conf Pattern Recognit (ICPR), Istanbul, Turkey 4089–4092

  17. Sahín E, Yilmaz I (2018) QRMW: quantum representation of multi wavelength images. Turk J Electer Eng Co 26:768–779

    Article  Google Scholar 

  18. Sang J, Wang S, Li Q (2017) A novel quantum representation of color digital images. Quant Inf Process 16(2):1–14

    Article  MathSciNet  Google Scholar 

  19. Sheng Li H, Chen X, Xia H, Liang Y, Zhou Z (2018) A qantum image representation based on bitplanes. IEEE Access 6, 62396 – 62404

  20. Sun B, Le PQ, Iliyasu AM, Yan F, Garcia JA, Dong F, Hirota K (2011) A multi-channel representation for images on quantum computers using the RGB\(\alpha\) color space. In IEEE 7th International Symposium on Intelligent Signal Processing, Floriana, Malta, IEEE, pp. 1–6

  21. Tai JC, Tseng ST, Lin CP, Song KT (2004) Real-time image tracking for automatic traffic monitoring and enforcement applications. Image Vision Comput 22(6):485–501

    Article  Google Scholar 

  22. Tolson E (2001) Machine learning in the area of image analysis and pattern recognition. Advanced Undergraduate Project

  23. Venegas-andraca S, Ball J (2010) Processing images in entangled quantum systems. Quant Inf Process 9:1–11

    Article  MathSciNet  Google Scholar 

  24. Venegas-Andraca SE, Bose S (2003) Storing, processing, and retrieving an image using quantum mechanics. In Proc SPIE Conf Quantum Inf Comput 5105

  25. Vibhute A, Bodhe SK (2012) Applications of image processing in agriculture: a survey. Int J Comput Appl 52(2):34–40

    Google Scholar 

  26. Wang B, Hao MQ, Li PC, Liu ZB (2020) Quantum representation of indexed images and its applications. Int J Theor Phys 59(2):374–402

    Article  MathSciNet  Google Scholar 

  27. Wang L, Ran Q, Ma J (2020) Double quantum color images encryption scheme based on DQRCI. Multimed Tools Appl 79(9):6661–6687

    Article  Google Scholar 

  28. Wang L, Ran Q, Ma J, Yu S, Tan L (2019) QRCI: a new quantum representation model of color digital images. Opt Commun 438:147–158

    Article  Google Scholar 

  29. Weber A (1997) USC-SIPI Image Database. https://sipi.usc.edu/databases

  30. Xu G, Xu X, Wang X, Wang X (2019) Order-encoded quantum image model and parallel histogram specification. Quant Inf Process 18(11):1–26

    Article  MathSciNet  Google Scholar 

  31. Younes A (2017) Reading a single qubit system using weak measurement with variable strength. Ann Phys (N. Y.) 380 93–105

  32. Zhang Y, Lu K, Gao Y, Wang M (2013) NEQR : a novel enhanced quantum representation of digital images. Quant Inf Process 12, 8 2833-2860

  33. Zhang Y, Lu K, Gao Y, Xu K (2013) A novel quantum representation for log-polar images. Quant Inf Process 12(9):3103–3126

    Article  MathSciNet  Google Scholar 

  34. Zhu H (2003) Medical image processing overview. University of Calgary, Toronto, Ontario

    Google Scholar 

Download references

Acknowledgements

This paper is supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt, under initiatives of Science Up Faculty of Science Grant No 6564. (ASRT) is the 2nd affiliation of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhan Nasr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, N., Younes, A. & Elsayed, A. Efficient representations of digital images on quantum computers. Multimed Tools Appl 80, 34019–34034 (2021). https://doi.org/10.1007/s11042-021-11355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11355-4

Keywords

Navigation