Skip to main content

Advertisement

Log in

Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2•−, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p •− (possible sources for O2•−), the Rieske iron–sulfur cluster (possible source of O2•− and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2•− and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alric J, Pierre Y, Picot D, Lavergne J, Rappaport F (2005) Spectral and redox characterization of the heme ci of the cytochrome b 6 f complex. Proc Natl Acad Sci (USA) 102:15860–15865

    Article  CAS  Google Scholar 

  • Baniulis D et al (2009) Structure-function, stability, and chemical modification of the cyanobacterial Cytochrome b 6 f Complex from Nostoc sp. PCC 7120. J Biol Chem 284:9861–9869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baniulis D, Hasan SS, Stofleth JT, Cramer WA (2013) Mechanism of enhanced superoxide production in the cytochrome b 6 f complex of oxygenic. Photosyn Biochem 52:8975–8983

    Article  CAS  Google Scholar 

  • Baymann F, Giusti F, Picot D, Nitschke W (2007) The c i /b H moiety in the b 6 f complex studied by EPR: a pair of strongly interacting hemes. Proc Natl Acad Sci (USA) 104:519–524

    Article  CAS  Google Scholar 

  • Bermudez MA, Galmes J, Moreno I, Mullineaux PM, Gotor C, Romero LC (2012) Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol 160:274–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Black MT, Widger WR, Cramer WA (1987) Large-scale purification of active cytochrome b 6 /f complex from spinach chloroplasts. Arch Biochem Biophys 252:655–661

    Article  PubMed  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) Blast+: architecture and applications. BMC Bioinform 10:421–430

    Article  CAS  Google Scholar 

  • Choudhry FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  Google Scholar 

  • Cramer WA, Savikhin S, Yan J, Yamashita E (2009) The enigmatic chlorophyll a molecule in the cytochrome b 6 f complex. In: Rebeiz C et al (eds) The chloroplast system: Biochemistry and molecular biology, vol 31. Advances in Photosynthesis and Respiration. Springer, Dordrecht, pp 89–92

    Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crofts AR, Shinkarev VP, Kolling DRJ, Hong S (2003) The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c 1 and bH in the bc 1 complex. J Biol Chem 278:36191–36201

    Article  PubMed  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Dashdorj N, Zhang H, Kim H, Yan J, Cramer WA, Savikhin S (2005) The single chlorophyll a molecule in the cytochrome b 6 f complex: unusual optical properties protect the complex against singlet oxygen. Biophys J 88:4178–4187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system Software

  • Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76:111–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. https://doi.org/10.3389/fpls.2016.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2012) Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of Photosystem II: implications for the identification of oxygen channels within. Photosyst Biochem 51:6371–6377. https://doi.org/10.1021/bi300650n

    Article  CAS  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2013) Oxidized amino acid residues in the vicinity of QA and PheoD1 of the Photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8:e58042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furbacher PN, Girvin ME, Cramer WA (1989) On the question of interheme electron transfer in the chloroplast cytochrome b 6 in situ. Biochemistry 28:8990–8998

    Article  PubMed  CAS  Google Scholar 

  • Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011) Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. Rapid Commun Mass Spectrom 25:184–190

    Article  PubMed  CAS  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Castelli GP, Lenaz G (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2. FEBS Lett 505:364–368

    Article  PubMed  CAS  Google Scholar 

  • Hasan SS, Cramer WA (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b 6 f complex. Structure 22:1008–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis S, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b 6 /f complex. Proc Natl Acad Sci (USA) 110:4297–4302

    Article  Google Scholar 

  • Hauska G (2004) The isolation of a functional cytochrome b 6 f complex: from lucky encounter to rewarding experiences. Photosyn Res 80:277–291

    Article  PubMed  CAS  Google Scholar 

  • Hurt E, Hauska G (1981) A cytochrome f/b 6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur J Biochem 117:591–599

    Article  PubMed  CAS  Google Scholar 

  • Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem. Proc Natl Acad Sci (USA) 114:2988–2993

    Article  CAS  Google Scholar 

  • Kar UK, Simonian M, Whitelegge JP (2017) Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteom 14:715–723

    Article  CAS  Google Scholar 

  • Kim CS, Jung J (1992) Iron-sulfur centers as endogenous blue light sensitizers in cells: a study with an artificial non-heme iron protein. Photochem Photobiol 56:63–68

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Dashdorj N, Zhang H, Yan J, Cramer WA, Savikhin S (2005) An anomalous distance dependence of intra-protein chlorophyll-carotenoid triplet energy transfer. Biophys J 89:PL28–PL30

    Google Scholar 

  • Kramer DM, Crofts AR (1994) Re-examination of the properties and function of the b cytochromes of the thylakoid cytochrome bf complex. Biochim Biophys Acta 1184:193–201

    Article  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F (2013) Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. Biochim Biophys Acta 1827:1332 – 1339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levesque-Tremblay G, Havaux M, Ouellet F (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J 60:691–702

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Mittler R (2016) ROS are good. Trends Plant Sci 7:405–410. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  Google Scholar 

  • Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140:103–110

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Joliot P, Liebl U, Rutherford AW, Hauska G, Muller A, Riedel A (1992) The pH dependence of the redox midpoint potential of the 2Fe2S cluster from cytochrome b 6 f complex (the ‘Rieske centre’). Biochim Biophys Acta 1102:266–268

    Article  CAS  Google Scholar 

  • Peterman EJG et al (1998) Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b 6 f of Synechocystis PCC6803. Biophys J 75:389–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by Photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by Photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950. https://doi.org/10.3389/fpls.2016.01950

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T, Vincon M, Garin J (1995) Micropreparative one- and two-dimensional electrophoresis. Improvement with new photopolymerization systems. Electrophoresis 16:1414–1422

    Article  PubMed  CAS  Google Scholar 

  • Rich PR, Bendall DS (1980) The redox potentials for the b-type cytochromes of higher plant chloroplasts. Biochim Biophys Acta 591:153–161

    Article  PubMed  CAS  Google Scholar 

  • Sang M et al (2010) High-light induced singlet oxygen formation in cytochrome b 6 f complex from Bryopsis corticulans as detected by EPR spectroscopy. Biophys Chem 146:7–12

    Article  PubMed  CAS  Google Scholar 

  • Sang M et al (2011a) High-light-induced superoxide anion radical formation in cytochrome b 6 f complex from spinach as detected by. EPR spectroscopy Photosynthetica 49:48–54

    Article  CAS  Google Scholar 

  • Sang M et al (2011b) High-light induced superoxide radical formation in cytochrome b 6 f complex from Bryopsis corticulans as detected by EPR spectroscopy. Photochem Photobiol 102:177–181

    Article  CAS  Google Scholar 

  • Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A (2010) Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production. Biochim Biophys Acta 1797:1820–1827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Sys Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  Google Scholar 

  • Souda P, Ryan CM, Cramer WA, Whitelegge JP (2011) Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods 55:330–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stofleth JT (2012) Understanding free radicals: Isolating active thylakoid membranes and purifying the cytochrome b 6 f complex for superoxide generation studies. J Pur Undergrad Res 2:64–69

    Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418

    Article  PubMed  CAS  Google Scholar 

  • Suh H-J, Kim CS, Jung J (2000) Cytochrome b 6 /f complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. Photochem Photobiol 71:103–109

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Anderson VE (2004) Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis 25:959–965

    Article  PubMed  CAS  Google Scholar 

  • Szymańska R, Dluzewska J, Slesak I, Kruk J (2010) Ferredoxin:NADP+ oxidoreductase bound to cytochrome b 6 f complex is active in plastoquinone reduction: implications for cyclic electron transport. Physiol Plant 141:289–298

    Article  PubMed  CAS  Google Scholar 

  • T’Sai A, Palmer G (1983) Potentiometric studies on yeast complex III. Biochim Biophys Acta 722:349–363

    Article  PubMed  Google Scholar 

  • Tripathy BC, Oelmuller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twigg AI, Baniulis D, Cramer WA, Hendrich MP (2009) EPR detection of an O2 surrogate bound to heme cn of the cytochrome b 6 f complex. J Amer Chem Soc 131:12536–12537

    Article  CAS  Google Scholar 

  • Weisz DA, Gross ML, Pakrasi HB (2017) Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. Sci Adv 3:eaao3013

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Freitas MA (2009) MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9:1548–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan J, Dashdorj N, Baniulis D, Yamashita E, Savikhin S, Cramer WA (2008) On the structural role of the aromatic residue environment of the chlorophyll a in the cytochrome b 6 f complex. Biochemistry 47:3654–3661

    Article  PubMed  CAS  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b 6 f complex. J Biol Chem 276:38159–38165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Energy, Office of Basic Energy Sciences Grant DE-FG02-09ER20310 given to TMB and LKF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, R.M., Sallans, L., Frankel, L.K. et al. Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex. Photosynth Res 137, 141–151 (2018). https://doi.org/10.1007/s11120-018-0485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0485-0

Keywords

Navigation