Skip to main content

Advertisement

Log in

Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: a 15-year study in a Californian oak-grass savanna

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ecosystem CO2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf–canopy–ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford JW, Woodward FI, Hurry V (2008) Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Glob Chang Biol 14 (11):2709–2726. doi:10.1111/j.1365-2486.2008.01664.x

    Google Scholar 

  • Bahga A, Madisetti V (2016) Big data science & analytics: a hands-on approach paperback. VPT, Lexington

    Google Scholar 

  • Baldocchi DD (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Barr JG, Engel V, Fuentes JD, Fuller DO, Kwon H (2013) Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance. Biogeosciences 10(3):2145–2158. doi:10.5194/bg-10-2145-2013

    Article  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24(2):253–259

    Article  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Boyd D, Crawford K (2012) critical questions for big data. Inf Commun Soc 15(5):662–679. doi:10.1080/1369118X.2012.678878

    Article  Google Scholar 

  • Chapin FS III, Starfield AM (1997) Time lags and novel ecosystems in response to transient climatic change in Arctic Alaska. Clim Chang 35(4):449–461

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Ch B, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jenson NO, Katul G, Keronen P, Kowalski A, Lai CT, Law B, Meyers T, Moncrief J, Moors EJ, Munger W, Pilegaard K, Rannik U, Rebmann C, Sukyer A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125(1):42–45. doi:10.1104/pp.125.1.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghannoum O, Way DA (2011) On the role of ecological adaptation and geographic distribution in the response of trees to climate change. Tree Physiol 31(12):1273–1276. doi:10.1093/treephys/tpr115

    Article  PubMed  Google Scholar 

  • Harley P, Tenhunen J (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis from biochemistry to canopy, vol 19. Crop Science Society of America, Madison, p 17–39

    Google Scholar 

  • Helliker BR, Richter SL (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454(7203):511–514. http://www.nature.com/nature/journal/v454/n7203/suppinfo/nature07031_S1.html

  • Jackson LE (1985) Ecological origins of California’s Mediterranean Grasses. J Biogeogr 12(4):349–361

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, New York, p 51

    Google Scholar 

  • Kim J, Guo Q, Baldocchi DD, Leclerc M, Xu L, Schmid HP (2006) Upscaling fluxes from tower to landscape: overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agric For Meteorol 136(3–4):132–146

    Article  Google Scholar 

  • Leuning R (2002) Temperature dependence of two parameters in a photosynthesis model. Plant Cell Environ 25(9):1205–1210. doi:10.1046/j.1365-3040.2002.00898.x

    Article  CAS  Google Scholar 

  • Lombardozzi DL, Bonan GB, Smith NG, Dukes JS, Fisher RA (2015) Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophys Res Lett 42(20):8624–8631. doi:10.1002/2015GL065934

    Article  CAS  Google Scholar 

  • Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147(3–4):157–171

    Article  Google Scholar 

  • Ma S, Baldocchi DD, Mambelli S, Dawson TE (2011) Are temporal variations of leaf traits responsible for seasonal and inter-annual variability in ecosystem CO2 exchange? Funct Ecol 25(1):258–270

    Article  Google Scholar 

  • Ma S, Baldocchi D, Wolf S, Verfaillie J (2016) Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in Californian oak-grass savanna. Agric For Meteorol 228–229:252–264. doi:10.1016/j.agrformet.2016.07.016

    Article  Google Scholar 

  • Marr B (2016) Front matter. In: Marr B (ed) Big data in practice: how 45 successful companies used big data analytics to deliver extraordinary results. Wiley, Hoboken. doi:10.1002/9781119278825.fmatter

    Chapter  Google Scholar 

  • Medlyn BE (1998) Physiological basis of the light use efficiency model. Tree Physiol 18:167–176

    Article  PubMed  Google Scholar 

  • Miller G, Chen X, Rubin Y, Ma S, Baldocchi D (2010) Groundwater uptake by woody vegetation in a semi-arid oak savanna. Water Resour Res 46:W10503

    Article  Google Scholar 

  • Moffat AM, Beckstein C, Churkina G, Mund M, Heimann M (2010) Characterization of ecosystem responses to climatic controls using artificial neural networks. Global Chang Biol 16:2737–2749

    Article  Google Scholar 

  • Niu SL, Luo YQ, Fei SF, Yuan WP, Schimel D, Law BE, Ammann C, Arain MA, Arneth A, Aubinet M, Barr A, Beringer J, Bernhofer C, Black TA, Buchmann N, Cescatti A, Chen JQ, Davis KJ, Dellwik E, Desai AR, Etzold S, Francois L, Gianelle D, Gielen B, Goldstein A, Groenendijk M, Gu LH, Hanan N, Helfter C, Hirano T, Hollinger DY, Jones MB, Kiely G, Kolb TE, Kutsch WL, Lafleur P, Lawrence DM, Li LH, Lindroth A, Litvak M, Loustau D, Lund M, Marek M, Martin TA, Matteucci G, Migliavacca M, Montagnani L, Moors E, Munger JW, Noormets A, Oechel W, Olejnik J, Kyaw TPU, Pilegaard K, Rambal S, Raschi A, Scott RL, Seufert G, Spano D, Stoy P, Sutton MA, Varlagin A, Vesala T, Weng ES, Wohlfahrt G, Yang B, Zhang ZD, Zhou XH (2012) Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol 194(3):775–783. doi:10.1111/j.1469-8137.2012.04095.x

    Article  PubMed  Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Chang Biol 9(4):525–535

    Article  Google Scholar 

  • Reed KL, Hamerly ER, Dinger BE, Jarvis PG (1976) Analytical model for field measurement of photosynthesis. J Appl Ecol 13(3):925–942

    Article  Google Scholar 

  • Ryu Y, Verfaillie J, Macfarlane C, Kobayashi H, Sonnentag O, Vargas R, Ma S, Baldocchi DD (2012) Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sens Environ 126:116–125. doi:10.1016/j.rse.2012.08.027

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, McCarthy HR, Kim HS, Oishi AC, Oren R (2005) Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiol 25(7):887–902

    Article  PubMed  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang J-Y, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141(1):2–18. doi:10.1016/j.agrformet.2006.09.001

    Article  Google Scholar 

  • Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118(3–4):207–220

    Article  Google Scholar 

  • Wang J, Xiao X, Wagle P, Ma S, Baldocchi D, Carrara A, Zhang Y, Dong J, Qin Y (2016) Canopy and climate controls of gross primary production of Mediterranean-type deciduous and evergreen oak savannas. Agric For Meteorol 226–227:132–147. doi:10.1016/j.agrformet.2016.05.020

    Article  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119(1):89–100. doi:10.1007/s11120-013-9873-7

    Article  CAS  PubMed  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J Roy Meteor Soc 106(447):85–100

    Article  Google Scholar 

  • Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534(7609):680–683. doi:10.1038/nature17966

    Article  CAS  PubMed  Google Scholar 

  • Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net exchange of CO2 in a Midlatitude Forest. Science 260(5112):1314–1317

    Article  CAS  PubMed  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge studies in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodward FI (1992) Predicting plant responses to global environmental change. New Phytol 122(2):239–251. doi:10.1111/j.1469-8137.1992.tb04228.x

    Article  CAS  Google Scholar 

  • Woodward FI, Lomas MR (2004) Vegetation dynamics: simulating responses to climatic change. Biol Rev 79(3):643–670. doi:10.1017/S1464793103006419

    Article  CAS  PubMed  Google Scholar 

  • Woodward FI, Lomas MR, Kelly CK (2004) Global climate and the distribution of plant biomes. Philos Trans R Soc Lond Ser B 359(1450):1465–1476

    Article  CAS  Google Scholar 

  • Xiao J, Zhuang Q, Baldocchi DD, Law BE, Richardson AD, Chen J, Oren R, Starr G, Noormets A, Ma S, Verma SB, Wharton S, Wofsy SC, Bolstad PV, Burns SP, Cook DR, Curtis PS, Drake BG, Falk M, Fischer ML, Foster DR, Gu L, Hadley JL, Hollinger DY, Katul GG, Litvak M, Martin TA, Matamala R, McNulty S, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw U KT, Schmid HP, Scott RL, Sun G, Suyker AE, Torn MS (2008) Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric For Meteorol 148(11):1827–1847

    Article  Google Scholar 

  • Xu L, Baldocchi DD (2003) Seasonal trend of photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877

    Article  PubMed  Google Scholar 

  • Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123(1–2):79–96. doi:10.1016/j.agrformet.2003.10.004

    Article  Google Scholar 

  • Yamori W, Hikosaka K, Way D (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117. doi:10.1007/s11120-013-9874-6

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Liu S, Zhou G, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143(3–4):189–207. doi:10.1016/j.agrformet.2006.12.001

    Article  Google Scholar 

  • Yuan W, Luo Y, Liang S, Yu G, Niu S, Stoy P, Chen J, Desai AR, Lindroth A, Gough CM, Ceulemans R, Arain A, Bernhofer C, Cook B, Cook DR, Dragoni D, Gielen B, Janssens IA, Longdoz B, Liu H, Lund M, Matteucci G, Moors E, Scott RL, Seufert G, Varner R (2011) Thermal adaptation of net ecosystem exchange. Biogeosciences 8:1453–1463

    Article  Google Scholar 

Download references

Acknowledgements

This research is a member of the AmeriFlux and Fluxnet networks, supported in part by the Office of Science (BReco), U.S. Department of Energy, Grant No. DE-FG02-03Reco63638 and through the Western Regional Center of the National Institute for Global Environmental Change under Cooperative Agreement No. DE-FC02-03Reco63613. Other sources of support included the Kearney Soil Science Foundation, the National Science Foundation, and the Californian Agricultural Experiment Station. We are grateful to Dr. Laurie Kotten and Housen Chu who commented on early versions and Dr. Kenneth Worthy who edited the manuscript and suggested clearer expressions in English and science. We are grateful for receiving constructive comments from two anonymous reviewers who shared their expertise helping us to make a stronger scientific contribution. We also thank the Tonzi and Vaira families for allowing us to access their ranches for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyan Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Osuna, J.L., Verfaillie, J. et al. Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: a 15-year study in a Californian oak-grass savanna. Photosynth Res 132, 277–291 (2017). https://doi.org/10.1007/s11120-017-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0388-5

Keywords

Navigation