Skip to main content

Advertisement

Log in

Heat stress-induced effects of photosystem I: an overview of structural and functional responses

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth’s biomes ranging from moderate (3–4 °C) to extreme (6–8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856–863, 2011; Photosynth Res 116:145–151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CEF:

Cyclic electron flow around PSI

Cyt b6/f :

Cytochrome b6/f complex

DCPIP:

2,6-dichlorophenolindophenol

EPR:

Electron paramagnetic resonance

Fo :

Minimum yield of chlorophyll fluorescence in open PSII centers

FDPs:

Flavodiiron proteins

Fdx:

Ferredoxin

FNR:

Ferredoxin-NADP + oxidoreductase

FQR:

Ferredoxin-plastoquinone reductase

Fv/Fm:

Maximum photochemical efficiency of PSII in the dark-adapted state

LHCII a/b :

Light-harvesting chlorophyll a/b-protein complex of PSII

LHCI a/b :

Light-harvesting chlorophyll a/b-protein complex of PSI

MV:

Methyl viologen

NDH:

Chloroplastic NAD(P)H dehydrogenase complex

P700:

Reaction center chlorophyll of PSI

P700+ :

Oxidized form of PSI reaction center

PC:

Plastocyanin

pmf :

Transthylakoid proton motive force

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

PTOX:

Plastid terminal oxidase

QA :

Primary electron-accepting quinone in PSII

QB :

Secondary electron-accepting quinone in PSII

SOD:

Superoxide dismutase

References

  • Agrawal D, Allakhverdiev SI, Jajoo A (2016) Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. Russ J Plant Physiol 63:210–215

    Article  CAS  Google Scholar 

  • Aihara Y, Takahashi S, Minagawa J (2016) Heat induction of cyclic electron flow around photosystem I in the symbiotic dinoflagellate Symbiodinium. Plant Physiol 171:522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov VV, Murata N, Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J Photochem Photobiol B 34:149–157

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1995) Thylakoid protein phosphorylation, state 1- state 2 transitions, and photosystem stoichiometry adjustment: redox control at multiple levels of gene expression. Physiol Plant 93:196–205

    Article  CAS  Google Scholar 

  • Allen JF (2003) State transitions—a question of balance. Science 299:1530–1532

    Article  CAS  PubMed  Google Scholar 

  • Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant 120:4–11

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Andersson B (1982) The architecture of photosynthetic membranes: lateral and transverse organization. Trends Biochem Sci 7:288–292

    Article  CAS  Google Scholar 

  • Armond PA, Björkman O, Staehelin LA (1980) Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim Biophys Acta 601:433–442

    Article  CAS  PubMed  Google Scholar 

  • Babu TS, Sabat SC, Mohanty P (1992) Heat induced alterations in the photosynthetic electron transport and emission properties of the cyanobacterium Spirulina platensis. J Photochem Photobiol B 12:161–171

    Article  CAS  Google Scholar 

  • Barber J (1980) An explanation for the relationship between salt-induced stacking and chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett 118:1–10

    Article  CAS  Google Scholar 

  • Bearden AY, Malkin R (1975) Primary photochemical reaction in chloroplast photosynthesis. Q Rev Biophys 7:131–177

    Article  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Biggins J (1978) Functional homogeneity of P700 in cyclic and non-cyclic electron transport reactions in thylakoids. Biochim Biophys Acta 504:288–297

    Article  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, p 321

    Book  Google Scholar 

  • Boucher N, Carpentier R (1993) Heat-stress stimulation of oxygen uptake by photosystem I involves the reduction of superoxide radicals by specific electron donors. Photosynth Res 35:213–218

    Article  CAS  PubMed  Google Scholar 

  • Boucher N, Harnois J, Carpentier R (1990) Heat-stress stimulation of electron flow in a photosystem I submembrane fraction. Biochem Cell Biol 68:999–1004

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth Res 130:251–266

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Dacosta J, Goulas Y, Ducruet J-M, Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: a time-resolved analysis. Photosynth Res 48:189–196

    Article  CAS  PubMed  Google Scholar 

  • Bukhov N, Carpentier R (2004) Alternative photosystem-I driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33

    Article  CAS  PubMed  Google Scholar 

  • Bukhov NG, Mohanty P (1999) Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. In: Singal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishers, New Delhi, pp 617–648

    Chapter  Google Scholar 

  • Bukhov NG, Sabat SC, Mohanty P (1990) Analysis of chlorophyll a fluorescence changes in weak light in heat-treated Amaranthus chloroplasts. Photosynth Res 23:81–87

    Article  CAS  PubMed  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    Article  CAS  Google Scholar 

  • Bukhov NG, Samson G, Carpentier R (2000) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady state rate. Photochem Photobiol 72:351–357

    Article  CAS  PubMed  Google Scholar 

  • Bukhov NG, Samson G, Carpentier R (2001) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. The pool size of stromal reductants. Photochem Photobiol 74:438–443

    Article  CAS  PubMed  Google Scholar 

  • Busheva MC, Ivanov AG (1990) Effects of 17, 24 and 33 × 103 polypeptide depletion on the thermostability of photosystem 2-enriched subchloroplast membranes as revealed by 77 K fluorescence. Photosynthetica 24:550–555

    CAS  Google Scholar 

  • Cajánec M, Štroch M, Lachetová K, Kalina J, Špunda V (1998) Characterization of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. J Photochem Photobiol 47:39–45

    Article  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188

    Article  CAS  PubMed  Google Scholar 

  • Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36

    Article  CAS  PubMed  Google Scholar 

  • Carpentier R (1999) Effect of high-temperature stress on the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 337–348

    Chapter  Google Scholar 

  • Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626

    Article  CAS  PubMed  Google Scholar 

  • Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    Article  PubMed  Google Scholar 

  • Cournac L, Josse E-M, Joe¨t T, Rumeau D, Redding K, Kuntz M, Peltier G (2000) Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase involved in chlororespiration. Phil Trans R Soc Lond B 355:1447–1454

    Article  CAS  Google Scholar 

  • Dash S, Mohanty N (2002) Response of seedlings to heat-stress in cultivars of wheat: growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. J Plant Physiol 159:49–59

    Article  CAS  Google Scholar 

  • Diaz M, De Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Egorova EA, Bukhov NG (2002) Effect of elevated temperatures on the activity of alternative pathways of photosynthetic electron transport in intact barley and maize leaves. Russ J Plant Physiol 49:575–584

    Article  CAS  Google Scholar 

  • Egorova EA, Bukhov NG, Heber U, Samson G, Carpentier R (2003) Effect of the pool size of stromal reductants on the alternative pathway of electron transfer to photosystem I in chloroplasts of intact leaves. Russ J Plant Physiol 50:431–440

    Article  CAS  Google Scholar 

  • Enami I, Kitamura M, Isokawa Y, Ohta H, Katoh S (1994) Is primary cause of inactivation of oxygen evolution in spinach PSII membranes release of extrinsic 33 kDa protein or Mn? Biochim Biophys Acta 1186:52–58

    Article  CAS  Google Scholar 

  • Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R (2011) Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress. Plant Physiol Biochem 49:235–243

    Article  CAS  PubMed  Google Scholar 

  • Essemine J, Qu M, Mi H, Zhu X-G (2016) Response of chloroplast NAD(P)H dehydrogenase-mediated cyclic electron flow to a shortage or lack in ferredoxin-quinone oxidoreductase-dependent pathway in rice following short-term heat stress. Front Plant Sci 7:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Franzen L-G, Andreasson L-E (1984) Studies on manganese binding by selective solubilization of photosystem-II polypeptides. Biochim Biophys Acta 765:16–170

    Google Scholar 

  • Garab G, Lajko F, Mustardy L, Marton L (1989) Respiratory control over photosynthetic electron transport in chloroplasts of higher plants cells –evidence for chlororespiration. Planta 179:349–358

    Article  CAS  PubMed  Google Scholar 

  • Gerotto C, Alboresi A, Meneghesso A, Jokel M, Suorsa M, Aro EM, Morosinotto T (2016) Flavodiiron proteins as safety valve for electrons in Physcomitrella patens. Proc Natl Acad Sci USA 113:12322–12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gombos Z, Wada H, Hideg E, Murata N (1994) The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol 104:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Phil Trans R Soc B 365:2973–2989

    Article  PubMed  PubMed Central  Google Scholar 

  • Gounaris K, Brian APR, Quinn PJ, Williams WP (1983) Structural reorganization and functional changes associated with heat-induced phase separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett 153:47–52

    Article  CAS  Google Scholar 

  • Gounaris K, Brian APR, Quinn PJ, Williams WP (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim Biophys Acta 766:198–208

    Article  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem-II in vivo–antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M (1996) Short-term responses of photosystem I to heat stress. Photosynth Res 47:85–97

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the chlorine-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystem I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186:88–98

    Article  CAS  PubMed  Google Scholar 

  • Heckathorn SA, Downs CA, Sharkey TD, Coleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 116:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideg E, Vass I (1993) The 75 °C thermoluminescence band of green tissues: chemiluminescence from membrane-chlorophyll interaction. Photochem Photobiol 58:280–283

    Article  CAS  Google Scholar 

  • Hu ZH, Xu YN, Jiang GZ, Kuang TY (2004) Degradation and inactivation of photosystem I complexes during linear heating. Plant Sci 166:1177–1183

    Article  CAS  Google Scholar 

  • Ibánez H, Ballester A, Munoz R, Quiles MJ (2010) Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol 167:732–738

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change, IPCC WG3 Fifth Assessment Report

  • IPCC (2007) Climate change 2007: the physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report

  • Ivanov AG, Velitchkova MY (1990) Heat-induced changes in the efficiency of P700 photo-oxidation in pea chloroplast membranes. J Photochem Photobiol B 4:301–320

    Article  Google Scholar 

  • Ivanov AG, Velitchkova MY (2014) Mechanisms of stimulation of photosystem I activity in chloroplast membranes under heat stress. Correlation between P700 photooxidation and thermostability of thylakoid membrane organization. In: Allakhverdiev SI, Rubin AB, Shuvalov VA (eds), Contemporary problems of photosynthesis, vol 2. Institute of Computer Science, Moscow, pp 377–395

    Google Scholar 

  • Ivanov AG, Velitchkova MY, Kafalieva DN (1986) Heat-induced changes in photosystem I reaction center in pea chloroplast membranes. Compt Rend Acad Bulg Sci 39:123–126

    CAS  Google Scholar 

  • Ivanov AG, Velitchkova M, Kafalieva D (1987) Multiple effects of trypsin- and heat treatments on the ultrastructure and surface charge density of pea chloroplasts membranes. Influence on P700 parameters. Prog Photosynth Res 2:741–744

    Article  CAS  Google Scholar 

  • Ivanov AG, Kitcheva MI, Christov AM, Popova LP (1992) Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts. Plant Physiol 98:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner NPA (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Izawa S, Good NE (1966) Effect of salt and electron transport on the conformation of isolated chloroplasts. II. Electron microscopy. Plant Physiol 41:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PE, Haldrup A, Rosgaard L, Scheller HV (2003) Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol Plant 119:313–321

    Article  CAS  Google Scholar 

  • Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352

    Article  CAS  PubMed  Google Scholar 

  • Joët T, Genty B, Josse E-M, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josse E-M, Alcaraz J-P, Labouré A-M, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, San Pietro A (1967) Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch Biochem Biophys 122:144–152

    Article  CAS  PubMed  Google Scholar 

  • Kochubey SM, Shevchenko VV, Kazantsev TA (2013) Changes of the antenna of photosystem I induced by short-term heating. BioChemistry 7:67–77

    Google Scholar 

  • Kono M, Noguchi K, Terashima I (2014) Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol 55:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Kouřil R, Lazár D, Ilik P, Skotnica J, Krchňák P, Nauš J (2004) High-temperature induced chlorophyll fluorescence rise in plants at 40–50 °C: experimental and theoretical approach. Photosynth Res 81:49–66

    Article  PubMed  Google Scholar 

  • Krumova SB, Varkonyi ZS, Lambrev PH, Kovacs L, Todinova SJ, Busheva MC, Taneva SG, Garab G (2014) Heat- and light-induced detachment of the light-harvesting antenna complexes of photosystem I in isolated stroma thylakoid membranes. J Photochem Photobiol B 137:4–12

    Article  CAS  PubMed  Google Scholar 

  • Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899

    Article  CAS  PubMed  Google Scholar 

  • Lajkö F, Kadioglu A, Garab G (1991) Involvement of superoxide dismutase in heat-induced stimulation of photosystem I-mediated oxygen uptake. Biochem Biophys Res Commun 174:696–700

    Article  PubMed  Google Scholar 

  • Lemeille S, Willig A, Depège-Fargeix N, Delessert C, Bassi R, Rochaix JD (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 7:e1000045

    Article  PubMed Central  CAS  Google Scholar 

  • Li Q, Yao Z, Mi H (2016) Alleviation of photoinhibition by coordination of chlororespiration and cyclic electron flow mediated by NDH under heat stressed condition in tobacco. Front Plant Sci 7:285. doi:10.3389/fpls.2016.00285

    PubMed  PubMed Central  Google Scholar 

  • Lípová L, Krchňák P, Komenda J, Ilík P (2010) Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochim Biophys Acta 1797:63–70

    Article  PubMed  CAS  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  PubMed  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Huner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1982) Kinetic analysis of P700 photoconversion: effect of secondary electron donation and plastocyanin inhibition. Arch Biochem Biophys 217:536–545

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Ow RA (1969) Photoconversion kinetics of chloroplast systems I and II. Effect of Mg2+. Biochim Biophys Acta 189:109–115

    Google Scholar 

  • Minagawa J, Tokutsu R (2015) Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. Plant J 82:413–428

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mohanty N, Murthy SDS, Mohanty P (1987) Reversal of heat-induced alterations in photochemical activities in wheat primary leaves. Photosynth Res 14:259–267

    Article  CAS  PubMed  Google Scholar 

  • Mohanty P, Vani B, Prakash JSS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57c:836–842

    Google Scholar 

  • Mohanty P, Kreslavski VD, Klimov VV, Los DA, Mimuro M, Carpentier R, Allakhverdiev SI (2012) Heat stress: susceptibility, recovery and regulation. In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration 34, Springer, New York, pp 251–274

    Chapter  Google Scholar 

  • Molotkovsky YG, Zheskova IM (1965) The influence of heating on the morphology and photochemical activity of isolated chloroplasts. Biochem Biophys Res Commun 20:411–415

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Huner NPA (2002) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hoja M, Meurer J, Endo T, Tasaka M, Shikamai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta 189:171–181

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Ghobadi MZ, Larkum AW, Shen JR, Allakhverdiev SI (2015) The biological water-oxidizing complex at the nano-bio interface. Trends Plant Sci 20:559–568

    Article  CAS  PubMed  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133

    Article  CAS  Google Scholar 

  • Nauš J, Kuropatwa R, Klinkovskÿ T, Ilík P, Lattová J, Pavlová Z (1992) Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. Biochim Biophys Acta 1101:359–362

    Article  Google Scholar 

  • Nellaepalli S, Mekala NR, Zsiros O, Mohanty P, Subramanyam R (2011) Moderate heat stress induces state transitions in Arabidopsis thaliana. Biochim Biophys Acta 1807:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli S, Zsiros O, Tóth T, Yadavalli V, Garab G, Subramanyam R, Kovács L (2014) Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. J Photochem Photobiol B 137:13–20

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli S, Kodru S, Raghavendra AS, Subramanyam R (2015) Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. J Photochem Photobiol B 146:24–33

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (2013) Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynth Res 116:145–151

    Article  CAS  PubMed  Google Scholar 

  • Ojakian G, Satir P (1974) Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc Natl Acad Sci USA 71:2052–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes M, Quiles MJ (2013) Stimulation of chlororespiration by drought under heat and high illumination in Rosa meillandina. J Plant Physiol 170:165–171

    Article  CAS  PubMed  Google Scholar 

  • Pastenesz C, Horton P (1996) Effect of high temperature on photosynthesis in beans. 1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112:1245–1251

    Article  Google Scholar 

  • Pearcy RW, Berry JA, Fork DC (1977) Effects of growth temperature on the thermal stability of the photosynthetic apparatus of Atriplex lentiformis (Torr.) Wats. Plant Physiol 59:873–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pospišil P, Šnyrychová I, Nauš J (2007) Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Biochim Biophys Acta 1767:854–859

    Article  PubMed  CAS  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Raison JK, Roberts JKM, Berry JA (1982) Correlation between the thermal stability of chloroplasts (thylakoids) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander, to growth temperature. Biochim Biophys Acta 688:218–228

    Article  CAS  Google Scholar 

  • Ruban AV, Trash VV (1991) Heat-induced reversible changes in photosystem I absorption cross-section of pea chloroplasts and sub-chloroplast preparations. Evidence from excitation fluorescence spectra. Photosynth Res 29:157–169

    CAS  PubMed  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Sabat SC, Mohanty P (1989) Characterization of heat-stress induced stimulation of photosystem I electron transport activity in Amaranthus chloroplasts: effect of cations. J Plant Physiol 133:686–691

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sane PV, Desai TS, Tatake VG, Govindjee (1984) Heat-induced reversible increase in photosystem 1 emission in algae, leaves and chloroplasts: spectra, activities and relation to state changes. Photosynthetica 18:439–444

    Google Scholar 

  • Sayed OH, Earnshaw MJ, Emes MJ (1989) Phtosynthetic response of different varieties of wheat to high temperature. II. Effect of heat stress on photosynthetic electron transport. J Exp Bot 40:633–638

    Article  CAS  Google Scholar 

  • Sayed OH, Earnshaw MJ, Emes MJ (1994) Characterization of the heat-induced stimulation of photosystem-I-mediated electron transport. Acta Bot Neerl 43:137–143

    Article  CAS  Google Scholar 

  • Sazanov LA, Burrows PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429:115–118

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J (2001) Role of subunits in eukaryotic photosystem I. Biochim Biophys Acta 1507:41–60

    Article  CAS  PubMed  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level. Biochim Biophys Acta 502:138–151

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of photosynthetic apparatus. Planta 136:233–238

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature stress. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants, Springer, The Netherlands, pp 101–129

    Chapter  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Staehelin AL (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71:136–158

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Geng Q, Du Y, Yang X, Zhai H (2017) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Sci 256:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sundby C, Andersson B (1985) Temperature induced reversible migration along thylakoid membranes of photosystem II regulates its association with LHCII. FEBS Lett 191:24–28

    Article  CAS  Google Scholar 

  • Sundby C, Melis A, Maenpää P, Andersson B (1986) Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of photosystem IIα to photosystem IIβ. Biochim Biophys Acta 851:457–483

    Article  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi TS, Thornber JP (1994) Heat-induced alterations in thylakoid membrane protein composition in barley. Aust J Plant Physiol 21:759–770

    Article  CAS  Google Scholar 

  • Tallón C, Quiles MJ (2007) Acclimation to heat and high light intensity during the development of oat leaves increases the NADP DH complex and PTOX levels in chloroplasts. Plant Sci 173:438–445

    Article  CAS  Google Scholar 

  • Tang Y, Chen M, Xu Y, Kuang T (2007a) Changes in thermostability of photosystem II and leaf lipid composition of rice mutant with deficiency of light-harvesting chlorophyll a/b protein complexes. J Integr Plant Biol 49:515–522

    Article  CAS  Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007b) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PG, Quinn PJ, Williams WP (1986) The origin of photosystem I-mediated electron transport stimulation in heat-stressed chloroplasts. Planta 167:133–139

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A, Jajoo A, Bharti S (2008) Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membrane. Photochem Photobiol Sci 7:485–491

    Article  CAS  PubMed  Google Scholar 

  • Vani B, Saradhi PP, Mohanty P (2001) Alteration in chloroplast structure and thylakoid membrane composition due to in vivo heat treatment of rice seedlings: correlation with the functional changes. J Plant Physiol 158:583–592

    Article  CAS  Google Scholar 

  • Velitchkova MY, Ivanov AG (1993) Effects of short-time heat stress on the parameters of cation induced increase of chlorophyll fluorescence in pea thylakoid membranes. J Plant Physiol 142:144–150

    Article  CAS  Google Scholar 

  • Velitchkova MY, Ivanov AG, Christov AM (1989a) Ultrastructural and fluorescence properties of granal and stromal membranes of pea chloroplasts exposed to heat stress. Photosynthetica 23:360–363

    Google Scholar 

  • Velitchkova M, Ivanov AG, Petkova R (1989b) Mechanism of heat induced stimulation of PSI activity in pea chloroplasts. In: Barber J, Malkin R (eds) Techniques and new developments in photosynthesis research, Plenum Press, New York, pp 587–590

    Chapter  Google Scholar 

  • Velitchkova M, Lazarova D, Popova A (2009) Response of isolated thylakoid membranes with altered fluidity to short term heat stress. Physiol Mol Biol Plants 15:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis E (1984) Short-term acclimation of spinach to high temperatures. Effect on chlorophyll fluorescence at 293 and 77 K in intact leaves. Plant Physiol 74:402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis E (1985) Light- and temperature-induced changes in the distribution of excitation energy between photosystem I and photosystem II in spinach leaves. Biochim Biophys Acta 807:118–126

    Article  CAS  Google Scholar 

  • Wen X, Gong H, Lu C (2005) Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci 168:1471–1476

    Article  CAS  Google Scholar 

  • Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat Plants 2:16012

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1995) Effects of high temperatures on photosynthetic systems in higher plants. 1. Causes of the increase in the fluorescence Fo level. In: Mathis P (ed) Photosynthesis: from light to biosphere, Kluwer Academic Publishers, The Netherlands, pp 849–852

    Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatment in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperature on photosynthetic systems in spinach: oxygen evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59

    Article  CAS  Google Scholar 

  • Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J 68:966–976

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Rep 6:20147

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Shao C, Zhao S, Brestic M (2013) Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE 8:e62100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NPAH), the Canada Research Chairs Program (NPAH), and the Canada Foundation for Innovation (NPAH). MYV was supported by Swiss National Science Foundation, BSRR Research Project IZEBZO-143169/1. SIA was supported by Russian Science Foundation (Grant No. 14-14-00039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.G., Velitchkova, M.Y., Allakhverdiev, S.I. et al. Heat stress-induced effects of photosystem I: an overview of structural and functional responses. Photosynth Res 133, 17–30 (2017). https://doi.org/10.1007/s11120-017-0383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0383-x

Keywords

Navigation