Skip to main content
Log in

Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerque L, Johnson MM, Schumann P, Rainey FA, da Costa MS (2014) Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis. Syst Appl Microbiol 37:235–243

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein databases search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beale SI (1999) Enzyme of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  CAS  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  PubMed  CAS  Google Scholar 

  • Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201

    PubMed  PubMed Central  Google Scholar 

  • Brocker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant DA, Costas AM, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlrophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carreto L, Moore E, Nobre MF et al (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465

    Article  CAS  Google Scholar 

  • Chen MY, Wu SH, Lin GH et al (2004) Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855

    Article  PubMed  CAS  Google Scholar 

  • Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  PubMed  CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cordell SC, Lowe J (2001) Crystal structure of the bacterial cell division regulator MinD. FEBS Lett 492:160–165

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Egas C, Barroso C, Froufe HJ, Pacheco J, Albuquerque L, da Costa MS (2014) Complete genome sequence of the radiation–resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand Genomic Sci 9:1062–1075

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  PubMed  CAS  Google Scholar 

  • Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gest H, Favinger J (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman W (2011) The Actinobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York

    Google Scholar 

  • Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 67–88

    Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2010) Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. Photosynth Res 104:357–372

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol 29:3397–3412

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2013) Moelcular markers for photosynthetic bacteria and insights into the origin and spread of photosynthesis. Adv Bot Res 66:37–66

    Article  CAS  Google Scholar 

  • Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies. In: Goodfellow M, Sutcliffe IC, Chun J (eds) Bacterial taxonomy, methods in microbiology, vol 41. Elsevier, London, pp 153–182

    Google Scholar 

  • Hester CM, Lutkenhaus J (2007) Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc Natl Acad Sci USA 104:20326–20331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  PubMed  CAS  Google Scholar 

  • Howard-Azzeh M, Shamseer L, Schellhorn HE, Gupta RS (2014) Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous cyanobacteria and identifying its closest relatives. Photosynth Res 122:171–185

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, Mao B, Aramini JM, Montelione GT (2014) Assessment of template-based protein structure predictions in CASP10. Proteins 82(Suppl 2):43–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341

    PubMed  CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Jurado V, Miller AZ, Alias-Villegas C, Laiz L, Saiz-Jimenez C (2012) Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst Appl Microbiol 35:306–309

    Article  PubMed  CAS  Google Scholar 

  • Kampfer P, Glaeser SP, Busse HJ, Abdelmohsen UR, Hentschel U (2014) Rubrobacter aplysinae sp. nov., isolated from the marine sponge Aplysina aerophoba. Int J Syst Evol Microbiol 64:705–709

    Article  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  PubMed  CAS  Google Scholar 

  • Leonard TA, Butler PJ, Lowe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J 24:270–282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  PubMed  CAS  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20:411–418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. W.H. Freeman and Company, New York

    Google Scholar 

  • Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 10):37–58

    Article  PubMed  CAS  Google Scholar 

  • Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform 7:339

    Article  Google Scholar 

  • Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28:75–90

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muraki N, Nomata J, Ebata K et al (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248

    Article  PubMed  CAS  Google Scholar 

  • Raymond J (2008) Coloring in the tree of life. Trends Microbiol 16:41–43

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Blankenship RE (2003) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Philos Trans R Soc Lond [Biol] 358:223–230

    Article  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rose PW, Prlic A, Bi C et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–D356

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai N, Yao M, Itou H et al (2001) The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP. Structure 9:817–826

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004–13015

    Article  PubMed  CAS  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tank M, Bryant DA (2015) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430

    Article  PubMed  CAS  Google Scholar 

  • Tank M, Bryant DA (2015) Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 6:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur S, Bothra AK, Sen A (2013) Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J Biosci 38:733–740

    Article  PubMed  CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterizaton of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res

  • Yarza P, Richter M, Peplies J et al (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Feng F, Medova H, Dean J, Koblizek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeng Y, Selyanin V, Lukes M, et al (2015) Characterization of microaerophilic bacteriochlorophyll a—containing bacterium Gemmatimonas phototrophica sp. nov. Int J Syst Evol Microbiol

  • Zhu K, Pincus DL, Zhao S, Friesner RA (2006) Long loop prediction using the protein local optimization program. Proteins 65:438–452

    Article  PubMed  CAS  Google Scholar 

  • Zsebo KM, Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. c apsulata. Cell 37:937–947

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant (No. 249924) from the Natural Science and Engineering Research Council of Canada. We thank two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.S., Khadka, B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. Photosynth Res 127, 201–218 (2016). https://doi.org/10.1007/s11120-015-0177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0177-y

Keywords

Navigation