Skip to main content
Log in

Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Massive accumulation of the secondary ketokarotenoid astaxanthin is a characteristic stress response of certain microalgal species with Haematococcus pluvialis as an illustrious example. The carotenogenic response confers these organisms a remarkable ability to survive in extremely unfavorable environments and makes them the richest source of natural astaxanthin. Exerting a plethora of beneficial effects on human and animal health, astaxanthin is among the most important bioproducts from microalgae. Though our understanding of astaxanthin biosynthesis, induction, and regulation is far from complete, this gap is filling rapidly with new knowledge generated predominantly by application of advanced “omics” approaches. This review focuses on the most recent progress in the biology of astaxanthin accumulation in microalgae including the genomic, proteomic, and metabolomics insights into the induction and regulation of secondary carotenogenesis and its role in stress tolerance of the photosynthetic microorganisms. Special attention is paid to the coupling of the carotenoid and lipid biosynthesis as well as deposition of astaxanthin in the algal cell. The place of the carotenogenic response among the stress tolerance mechanisms is revisited, and possible implications of the new findings for biotechnological production of astaxanthin from microalgae are considered. The potential use of the carotenogenic microalgae as a source not only of value-added carotenoids, but also of biofuel precursors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. BBA-Bioenergetics 1506:133–142

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117. doi:10.1034/j.1399-3054.2000.108002111.x

    Article  CAS  Google Scholar 

  • Chekanov K, Solovchenko A (2015) Possibilities and limitations of non-destructive monitoring of the unicellular green microalgae (Chlorophyta) in the course of balanced growth. Russian J Plant Physiol 62(2):270–278. doi:10.1134/S1021443715010033

  • Chen G, Wang B, Han D, Sommerfeld M, Lu Y, Chen F, Hu Q (2015) Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J 81:95–107. doi:10.1111/tpj.12713

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302. doi:10.1371/journal.pone.0024302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cunningham F Jr., Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49:557–583

    Article  CAS  Google Scholar 

  • Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101:3801–3807

    Article  CAS  PubMed  Google Scholar 

  • Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156. doi:10.1104/pp.113.235119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and of plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79. doi:10.1104/pp.114.248450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Del Campo J, García-González M, Guerrero M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. doi:10.1007/s00253-007-0844-9

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Cohu C, Muller O, Adams W III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88. doi:10.1007/s11120-012-9761-6

    Article  CAS  PubMed  Google Scholar 

  • Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C (2014) Engineering complex metabolic pathways in plants. Annu Rev Plant Biol 65:187–223

    Article  PubMed  Google Scholar 

  • Farré G, Twyman RM, Christou P, Capell T, Zhu C (2015) Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr Opin Biotechnol 32:54–60. doi:10.1016/j.copbio.2014.11.004

    Article  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z et al (2013a) Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3). Indian J Biochem Biophys 50:548–553

    CAS  PubMed  Google Scholar 

  • Gao Z et al (2013b) Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biol Res 46:201–206

    Article  PubMed  Google Scholar 

  • Gao Z, Meng C, Chen Y, Ahmed F, Mangott A, Schenk P, Li Y (2014) Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. J Appl Phycol. doi:10.1007/s10811-014-0491-3

    Google Scholar 

  • Goncalves EC, Johnson JV, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta 238:895–906

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TW (1961) Biosynthesis and function of carotenoids. Annu Rev Plant Physiol 12:219–244. doi:10.1146/annurev.pp.12.060161.001251

    Article  CAS  Google Scholar 

  • Gorelova O et al (2014) Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 167:181–195. doi:10.1007/s00203-014-1036-5

    Google Scholar 

  • Grunewald K, Hagen C (2001) β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in Haematococcus pluvialis. J Appl Phycol 13:89–93

    Article  CAS  Google Scholar 

  • Grunewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grunewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029

    Article  CAS  PubMed  Google Scholar 

  • Gu W et al. (2014) Quantitative proteomic analysis of thylakoid from two microalgae (Haematococcus pluvialis and Dunaliella salina) reveals two different high light-responsive strategies, Scientific Reports 4 doi:10.1038/srep06661

  • Gu W, Xie X, Gao S, Zhou W, Pan G, Wang G (2013) Comparison of different cells of Haematococcus pluvialis reveals an extensive acclimation mechanism during its aging process: from a perspective of photosynthesis. PloS One 8:e67028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerin M, Huntley M, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216. doi:10.1080/09670260802227736

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cordes K, Farese R Jr., Walther T (2009) Lipid droplets at a glance. J Cell Sci 122:749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gwak Y et al (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65:4317–43334. doi:10.1093/jxb/eru206

    Article  PubMed Central  PubMed  Google Scholar 

  • Hagen C, Braune W, Birckner E, Nuske J (1993a) Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). I The accumulation period as an active metabolic process. New Phytol 125:625–633. doi:10.1111/j.1469-8137.1993.tb03912.x

    Article  CAS  Google Scholar 

  • Hagen C, Braune W, Greulich F (1993b) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV: protection from photodynamic damage. J Photochem Photobiol B 20:153–160

    Article  CAS  Google Scholar 

  • Hagen C, Braune W, Björn L (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III Action as a sunshade. J Phycol 30:241–248

    Article  CAS  Google Scholar 

  • Han D, Wang J, Sommerfeld M, Hu Q (2012) Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J Phycol 48:693–705

    Article  CAS  Google Scholar 

  • Han D, Li Y, Hu Q (2013a) Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae 28:131–147

    Article  CAS  Google Scholar 

  • Han D, Li Y, Hu Q (2013b) Biology and commercial aspects of Haematococcus pluvialis. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Blackwell, Oxford, pp 388–405

    Chapter  Google Scholar 

  • Horton P (2014) Developments in research on non-photochemical fluorescence quenching: emergence of key ideas, theories and experimental approaches. In: Demmig-Adams B, Garab G, Adams Iii W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, vol 40, Advances in photosynthesis and respirationSpringer, Netherlands, pp 73–95. doi:10.1007/978-94-017-9032-1_3

    Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006) Stress-related differential expression of multiple OI-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  CAS  PubMed  Google Scholar 

  • Huner N, Dahal K, Hollis L, Bode R, Rosso D, Krol M, Ivanov AG (2012) Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Sci 3:255. doi:10.3389/fpls.2012.00255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson E, Schroeder W (1995) Microbial carotenoids advances in biochemical engineering biotechnology, vol 53. Springer, Berlin, pp 119–178

    Google Scholar 

  • Kim DK, Hong SJ, Bae JH, Yim N, Jin ES, Lee CG (2011) Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol Bioprocess Eng 16:698–705

    Article  CAS  Google Scholar 

  • Kobayashi M (2000) In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54:550–555

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997a) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997b) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177. doi:10.1007/s11120-010-9583-3

    Article  CAS  PubMed  Google Scholar 

  • Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Ind Biotechnol 10:169–183

    Article  CAS  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797. doi:10.1016/j.jplph.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Biol 50:47–65

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Minyuk G, Drobetskaya I, Chubchikova I, Terentyeva N (2008) Unicellular algae as renewable biological resource: a review. Mar Ecol J 7:5–23

    Google Scholar 

  • Minyuk G, Chelebieva E, Chubchikova I (2014) Secondary carotenogenesis of the green microalga Bracteacoccus minor(Chodat) Petrova (Chlorophyta) in a two-stage culture. International Journal on Algae 16:354–368. doi:10.1615/InterJAlgae.v16.i4.50

    Article  Google Scholar 

  • Mulders KJ, Janssen JH, Martens DE, Wijffels RH, Lamers PP (2014a) Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res 6:8–16

    Article  Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014b) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242. doi:10.1111/jpy.12173

    Article  CAS  Google Scholar 

  • Mulders KJ et al (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140

    Article  CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman F-A (2015) The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Plant Biol 66:14.11–14.26

    Article  Google Scholar 

  • Nisar N, Li L, Lu S, Khin Nay C, Pogson Barry J (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82. doi:10.1016/j.molp.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  • Otani H (2013) Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. Oxid Med Cell Longev 2013:1–14. doi:10.1155/2013/796891

    Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861. doi:10.1007/s11745-011-3579-4

    Article  CAS  PubMed  Google Scholar 

  • Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S (2012) Light-induced oil globule migration in Haematococcus pluvialis (Chlorophyceae). J Phycol 48:1209–1219. doi:10.1111/j.1529-8817.2012.01210.x

    Article  Google Scholar 

  • Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503. doi:10.1007/s00253-012-3940-4

    Article  CAS  PubMed  Google Scholar 

  • Recht L et al (2014) Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen-starvation in the green alga Haematococcus pluvialis. J Biol Chem 289:30387–30403. doi:10.1074/jbc.M114.555144

    Article  CAS  PubMed  Google Scholar 

  • Renstrom B, Liaaen-Jensen S (1981) Fatty acid composition of some esterified carotenols. Comp Biochem Physiol B 69:625–627

    Google Scholar 

  • Röding A, Dietzel L, Schlicke H, Grimm B, Sandmann G, Büchel C (2015) Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability. Photosynth Res 123:157–165. doi:10.1007/s11120-014-0055-z

    Article  PubMed  Google Scholar 

  • Rosenberg J, Oyler G, Wilkinson L, Betenbaugh M (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba S (2015) Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales). Algal Res 10:8–15

    Article  Google Scholar 

  • Shtaida N et al (2014) Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. J Exp Bot 65:6563–6576

    Article  PubMed Central  PubMed  Google Scholar 

  • Sirikhachornkit A, Niyogi KK (2010) Antioxidants and photo-oxidative stress responses in plants and algae. In: Rebeiz CA et al (eds) The Chloroplast, vol 31, advances in photosynthesis and respiration. Springer, Netherlands, pp 379–396. doi:10.1007/978-90-481-8531-3_24

    Google Scholar 

  • Solovchenko A (2011) Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light Russ. J Plant Physiol 58:9–17. doi:10.1134/S1021443710061056

    CAS  Google Scholar 

  • Solovchenko A (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Solovchenko A, Chekanov K (2014) Production of carotenoids using microalgae cultivated in photobioreactors. In: Paek K-Y, Murthy HN, Zhong J-J (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Netherlands, pp 63–91. doi:10.1007/978-94-017-9223-3_4

    Google Scholar 

  • Solovchenko A, Aflalo C, Lukyanov A, Boussiba S (2013) Nondestructive monitoring of carotenogenesis in Haematococcus pluvialis via whole-cell optical density spectra. Appl Microbiol Biotechnol 97:4533–4541. doi:10.1007/s00253-012-4677-9

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  CAS  PubMed  Google Scholar 

  • Su Y et al (2014) Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529. doi:10.1016/j.biortech.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Cunningham F, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci 95:11482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sussela M, Toppo K (2006) Haematococcus pluvialis-a green alga, richest natural source of astaxanthin. Curr Sci 90:1602–1603

    Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokarz D, Cisek R, El-Ansari O, Espie GS, Fekl U, Barzda V (2014) Organization of astaxanthin within oil bodies of Haematococcus pluvialis studied with polarization-dependent harmonic generation microscopy. PloS One 9:e107804

    Article  PubMed Central  PubMed  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci 110:19748–19753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2014) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  PubMed  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124. doi:10.1111/j.0022-3646.2003.03-043.x

    Article  CAS  Google Scholar 

  • Wang S-B, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29. doi:10.1007/s00425-004-1323-5

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sommerfeld M, Hu Q (2009) Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhang Z, Hu Q, Sommerfeld M, Lu Y, Han D (2014) Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. PLoS One 9:e106679. doi:10.1371/journal.pone.0106679

    Article  PubMed Central  PubMed  Google Scholar 

  • Yong Y, Lee Y (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia 30:257–261

    Article  Google Scholar 

  • Yuan J-P, Chen F (1998) Chromatographic separation and purification of trans-astaxanthin from the extracts of Haematococcus pluvialis. J Agric Food Chem 46:3371–3375

    Article  CAS  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chang W-C, Xiao Y, Liu H-W, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530. doi:10.1146/annurev-biochem-052010-100934

    Article  CAS  PubMed  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331. doi:10.1046/j.1529-8817.2002.01107.x

    Article  CAS  Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826. doi:10.1111/j.0022-3646.2005.05015.x

    Article  CAS  Google Scholar 

  • Zhong YJ et al (2011) Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exp Bot 62:3659–3669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Helpful notes of Mr. Konstantin A. Chekanov are greatly appreciated.

Conflict of interest

The author declares that he has no conflict of interest.

Funding

This study was funded by Russian Scientific Fund (project# 14-50-00029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei E. Solovchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovchenko, A.E. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125, 437–449 (2015). https://doi.org/10.1007/s11120-015-0156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0156-3

Keywords

Navigation