Skip to main content

Advertisement

Log in

Constrained geometric dynamics of the Fenna–Matthews–Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The trimeric Fenna–Mathews–Olson (FMO) complex of green sulphur bacteria is a well-studied example of a photosynthetic pigment–protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. By a range of simulation methods, many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long-lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter- and intra-molecular vibrations have been investigated extensively, the slow, conformational dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. The following study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states from the published crystal structure. Statistical and principle component analyses reveal highly correlated low frequency motions between functionally relevant elements, including strong correlations between pigments that are excitonically coupled. Our analysis reveals a hierarchy of structural interactions which enforce these correlated motions, from the level of monomer-monomer interfaces right down to the α-helices, β-sheets and pigments. In addition to inducing strong spatial correlations across the conformational ensemble, we find that the overall rigidity of the FMO complex is exceptionally high. We suggest that these observations support the idea of highly correlated inhomogeneous disorder of the electronic excited states, which is further supported by the remarkably low variance (typically <5 %) of the excitonic couplings of the conformational ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91(8):2778–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adolphs J, Müh F, Madjet A, Renger T (2008) Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Photosynth Res 95(2–3):197–209

    Article  CAS  PubMed  Google Scholar 

  • Anna JM, Scholes GD, van Grondelle R (2014) A little coherence in photosynthetic light harvesting. J BioSci 64(1):14–25

    Article  Google Scholar 

  • Barzega A, Moosavi-Movahedi A, Pedersen J, Miroliaei M (2009) Comparative thermostability of mesophilic and thermophilic alcohol dehydrogenases: stability-determining roles of proline residues and loop conformations. Enzym Microb Technol 45(2):73–79

    Article  Google Scholar 

  • Belfield WJ, Cole DJ, Martin IL, Payne MC, Chau PL (2014) Constrained geometric simulation of the nicotinic acetylcholine receptor. J Mol Gr Model 52:1–10

    Article  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Wiley, London

    Book  Google Scholar 

  • Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033):625–628

    Article  CAS  PubMed  Google Scholar 

  • Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB (2009) Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J Chem Phys 131(10):105–106

    Article  Google Scholar 

  • Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB (2010) Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys Rev A 81(6):062,346

    Article  Google Scholar 

  • Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke R, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher R, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2009) AMBER 11. University of California, San Francisco

    Google Scholar 

  • Ceccarelli M, Procacci P, Marchi M (2003) An ab initio force field for the cofactors of bacterial photosynthesis. J Comput Chem 24(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • Chin AW, Datta A, Caruso F, Huelga SF, Plenio MB (2010) Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J Phys 12(6):065,002

    Article  Google Scholar 

  • Chin A, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S, Plenio M (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat Phys 9(2):113–118

    Article  CAS  Google Scholar 

  • Christensson N, Kauffmann HF, Pullerits T, Mancal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116(25):7449–7454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole DJ, Chin AW, Hine NDM, Haynes PD, Payne MC (2013) Toward ab initio optical spectroscopy of the Fenna–Matthews–Olson complex. J Phys Chem Lett 4(24):4206–4212

    Article  CAS  Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):644–647

    Article  CAS  PubMed  Google Scholar 

  • David C, Jacobs D (2011) Characterizing protein motions from structure. J Mol Gr Model 31:41–56

    Article  CAS  Google Scholar 

  • Dimitrov SD, Durrant JR (2013) Materials design considerations for charge generation in organic solar cells. Chem Mater 26(1):616–630

    Article  Google Scholar 

  • Engel G, Calhoun T, Read E, Ahn T, Mancal T, Cheng Y, Blankenship R, Fleming G (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137):782–786

    Article  CAS  PubMed  Google Scholar 

  • Fassioli F, Dinshaw R, Arpin PC, Scholes GD (2014) Photosynthetic light harvesting: excitons and coherence. J R Soc Interface 11(92):20130,901

    Article  Google Scholar 

  • Fidler AF, Harel E, Long PD, Engel GS (2011) Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. J Phys Chem A 116(1):282–289

    Article  PubMed  Google Scholar 

  • Frank J (ed) (2012) Molecular machines in biology. Cambridge University Press, Cambridge

  • Fulle S, Christ NA, Kestner E, Gohlke H (2010) HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations. J Chem Info Mod 50(8):1489–1501

    Article  CAS  Google Scholar 

  • Gao J, Shi W, Ye J, Wang X, Hirao H, Zhao Y (2013) QM/MM modeling of environmental effects on electronic transitions of the FMO complex. J Phys Chem B 117(13):3488–3495

    Article  CAS  PubMed  Google Scholar 

  • Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170):512–516

    Article  PubMed  Google Scholar 

  • Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinform 22(21):2695–2696

    Article  CAS  Google Scholar 

  • Harel E, Engel GS (2012) Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc Natl Acad Sci USA 109(3):706–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hildner R, Brinks D, Nieder J, Cogdell R, Hulst N (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340(6139):1448–1451

    Article  CAS  PubMed  Google Scholar 

  • Huelga S, Plenio M (2013) Vibrations, quanta and biology. Contemp Phys 54(4):181–207

    Article  CAS  Google Scholar 

  • Ishizaki A, Fleming GR (2012) Quantum coherence in photosynthetic light harvesting. Annu Rev Condens Matter Phys 3:333–61

    Article  CAS  Google Scholar 

  • Jing Y, Zheng R, Li H, Shi Q (2012) Theoretical study of the electronic-vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria. J Phys Chem B 116(3):1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Jolley CC, Wells SA, Hespenheide BM, Thorpe MF, Fromme P (2006) Docking of photosystem I subunit C using a constrained geometric simulation. J Am Chem Soc 128:8803–8812

    Article  CAS  PubMed  Google Scholar 

  • Knox RS, Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77(5):497–501

    Article  CAS  PubMed  Google Scholar 

  • Kozuska JL, Paulsen IM, Belfild WJ, Martin IL, Cole DJ, Holt A, Dunn SMJ (2014) Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors. Br J Pharmacol 171:1617–1628

    Article  CAS  PubMed  Google Scholar 

  • Kreisbeck C, Kramer T (2012) Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J Phys Chem Lett 3(19):2828–2833

    Article  CAS  Google Scholar 

  • Lambert N, Chen Y, Cheng Y, Li C, Chen G, Nori F (2012) Quantum biology. Nat Phys 9(1):10–18

    Article  Google Scholar 

  • Lee H, Cheng YC, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316(5830):1462–1465

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wells SA, Jimenez-Roldan JE, Romer RA, Zhao Y, Sadler PJ, O’Connor PB (2012) Protein flexibility is key to cisplatin crosslinking in calmodulin. Protein Sci 21:1269–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • Marsh JA, Teichmann SA (2014) Parallel dynamics and evolution: protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays 36(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Barringhaus KH, Gohlke H (2011) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52:120–133

    Article  PubMed  Google Scholar 

  • Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A (2008) Environment-assisted quantum walks in photosynthetic energy transfer. J Chem Phys 129(17):174,106

    Article  Google Scholar 

  • Müh F, Madjet M, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp E, Renger T (2007) α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc Natl Acad Sci USA 104(43):16,862–16,867

    Article  Google Scholar 

  • Olaya-Castro A, Fassioli F (2011) Characterizing quantum-sharing of electronic excitation in molecular aggregates. Procedia Chem 3(1):176–184

    Article  CAS  Google Scholar 

  • Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011a) Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J Phys Chem B 115(4):758–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011b) Theory and simulation of the environmental effects on FMO electronic transitions. J Phys Chem Lett 2(14):1771–1776

    Article  CAS  Google Scholar 

  • OReilly EJ, Kolli A, Scholes GD, Olaya-Castro A (2012) The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J Chem Phys 137(17):174,109

    Article  Google Scholar 

  • O’Reilly EJ, Olaya-Castro A (2014) Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat Commun 5:3012

    PubMed Central  PubMed  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) Cath—a hierarchic classification of protein domain structures. Structure 5(8):1093–1109

    Article  CAS  PubMed  Google Scholar 

  • Panitchayangkoon G, Hayes D, Fransted K, Caram J, Harel E, Wen J, Blankenship R, Engel G (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA 107(29):12,766–12,770

    Article  CAS  Google Scholar 

  • Plenio MB, Huelga SF (2008) Dephasing-assisted transport: quantum networks and biomolecules. New J Phys 10(11):113,019

    Article  Google Scholar 

  • Rebentrost P, Mohseni M, Aspuru-Guzik A (2009) Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J Phys Chem B 113(29):9942–9947

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2008) Primary processes of photosynthesis: principles and apparatus. pt. 1. RSC Publishing, Philadelphia

    Google Scholar 

  • Renger T, Klinger A, Steinecker F (2012) Normal mode analysis of the spectral density of the Fenna–Matthews–Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. J Phys Chem B 116(50):14,565–14,580

    Article  CAS  Google Scholar 

  • Renger T, Müh F (2013) Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys 15:3348–3371

    Article  CAS  PubMed  Google Scholar 

  • Rey M, Chin AW, Huelga SF, Plenio MB (2013) Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism. J Phys Chem Lett 4(6):903–907

    Article  CAS  Google Scholar 

  • Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theor Comput 9(7):3084–3095

    Article  CAS  Google Scholar 

  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763–774

    Article  CAS  PubMed  Google Scholar 

  • Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A (2012) Atomistic study of the long-lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys J 102(3):649–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skochdopole N, Mazziotti DA (2011) Functional subsystems and quantum redundancy in photosynthetic light harvesting. J Phys Chem Lett 2(23):2989–2993

    Article  CAS  Google Scholar 

  • Sun M, Rose MB, Ananthanarayanan SK, Jacobs DJ, Yengo CM (2008) Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle. Proc Natl Acad Sci USA 105:8631–8636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari V, Peters WK, Jonas DM (2013) Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc Natl Acad Sci USA 110(4):1203–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from prosthecochloris aestuarii refined at 1.9 å resolution. J Mol Bio 188(3):443–454

    Article  CAS  Google Scholar 

  • Van Amerongen H, Valkunas L, Van Grondelle R (2000) Photosynthetic excitons. World Scientific, Singapore

    Book  Google Scholar 

  • Wells S, Menor S, Hespenheide B, Thorpe M (2005) Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2(4):S127–S136

    Article  CAS  PubMed  Google Scholar 

  • Wells S, Jimenez-Rolda JE, Romer R (2009) Comparative analysis of rigidity across protein families. Phys Biol 6(4):046005

    Article  CAS  PubMed  Google Scholar 

  • Wells SA (2013) Geometric simulation of flexible motion in proteins. In: Livesay DR (ed) Protein dynamics, vol II. Methods in molecular biology, vol 1084. Humana Press, New York, pp 173–192

    Google Scholar 

  • Wen J, Zhang H, Gross M, Blankenship R (2009) Membrane orientation of the FMO antenna protein from chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106(15):6134–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolynes PG (2009) Some quantum weirdness in physiology. Proc Natl Acad Sci USA 106(41):17247–17248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuen MJ, Shipman LL, Katz JJ, Hindman JC (1980) Concentration quenching of fluorescence from chlorophyll-a, pheophytin-a, pyropheophytin-a and their covalently-linked pairs. Photochem Photobiol 32(3):281–296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nicholas Hine (University of Cambridge) and Stephen Wells (University of Bath) for helpful discussions. A.S.F. is supported by a Doctoral Research Award from Microsoft Research. D.J.C. is supported by a Marie Curie International Outgoing Fellowship within the Seventh European Community Framework Programme. A.W.C. is supported by the Winton Programme for the Sustainability of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Fokas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokas, A.S., Cole, D.J. & Chin, A.W. Constrained geometric dynamics of the Fenna–Matthews–Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer. Photosynth Res 122, 275–292 (2014). https://doi.org/10.1007/s11120-014-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0027-3

Keywords

Navigation