Skip to main content

Advertisement

Log in

Calculation of pigment transition energies in the FMO protein

From simplicity to complexity and back

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 31 October 2007

An Erratum to this article was published on 31 October 2007

Abstract

The Fenna–Matthews–Olson (FMO) protein of green sulfur bacteria represents an important model protein for the study of elementary pigment–protein couplings. We have previously used a simple approach [Adolphs and Renger (2006) Biophys J 91:2778–2797] to study the shift in local transition energies (site energies) of the FMO protein of Prosthecochloris aestuarii by charged amino acid residues, assuming a standard protonation pattern of the titratable groups. Recently, we have found strong evidence that besides the charged amino acids also the neutral charge density of the protein is important, by applying a combined quantum chemical/electrostatic approach [Müh et al. (2007) Proc Natl Acad Sci USA, in press]. Here, we extract the essential parts from this sophisticated method to obtain a relatively simple method again. It is shown that the main contribution to the site energy shifts is due to charge density coupling (CDC) between the pigments and their pigment, protein and water surroundings and that polarization effects for qualitative considerations can be approximated by screening the Coulomb coupling by an effective dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We use different widths for the seven pigments. Pigments 1, 3, 4: fwhm = 60 cm−1; Pigment 2: fwhm = 100  cm−1; Pigments 5–7: fwhm = 120 cm−1. This empirical assignment is based on the assumption that those BChls, which according to the crystal structure have more water molecules bound in their vicinity, should have a larger disorder because of the structural heterogeneity of the water molecules.

  2. A value of R c = 5 Å is used, that was determined from transient spectra of photosystem II reaction centers in Renger and Marcus (2002b). The stationary spectra calculated here do not depend critically on this value.

  3. For BChla in polystyrene (ɛ = 2.6), a value \(|\Updelta{\mathbf{d}}|/f\) of 2–3 was reported (Lockhart and Boxer 1987). Using the empty cavity factor f = 3ɛ/(2ɛ + 1), then results in \(|\Updelta{\mathbf{d}}|=1.6-2.4\).

  4. These water molecules are the hydrogen bond donor to the 3-acetyl group of BChl 1, the axial ligand to the Mg atom of BChl 2, and two water molecules bridging the side chains of Asp 234 and Ser 235 via H-bonds.

  5. The close proximity of one water molecule to the 131-keto group of BChl 5 suggests formation of an H-bond there, but in our structural model this water molecule is oriented towards the negatively charged Asp 234, so that no H-bond is formed. Turning the water molecule towards the 131-keto group of BChl 5 results in a moderate red shift of ≈ 50 cm−1.

Abbreviations

BChl:

Bacteriochlorophyll

CD:

Circular dichroism

CDC:

Charge density coupling

FMO:

Fenna–Matthews–Olson

LD:

Linear dichroism

OD:

Absorption

PBQC:

Poisson–Boltzmann quantum chemistry

PCD:

Point charge-dipole

PPC:

Pigment-protein complex

RMSD:

Root mean square deviation

TrEsp:

Transition charge from electrostatic potential

References

  • Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797

    Article  CAS  PubMed  Google Scholar 

  • Bashford D, Karplus M (1990) pK a ’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10,219–10,225

    Article  CAS  Google Scholar 

  • Blankenship RE, Olson JM, Mette M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 399–435

    Google Scholar 

  • Chang JC (1977) Monopole effects on electronic excitation interaction between large molecules. I. Application to energy transfer in chlorophylls. J Chem Phys 67:3901–3909

    Article  CAS  Google Scholar 

  • Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci USA 104:790–795

    Article  CAS  PubMed  Google Scholar 

  • Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fowler G, Visschers R, Grief G, van Grondelle R, Hunter C (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850

    Article  CAS  PubMed  Google Scholar 

  • Freiberg A, Lin S, Timpmann K, Blankenship RE (1997) Exciton dynamics in FMO bacteriochlorophyll protein at low temperatures. J Phys Chem B 101:7211–7220

    Article  CAS  PubMed  Google Scholar 

  • Gudowska-Nowak E, Newton MD, Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 94:5795–5801

    Article  CAS  Google Scholar 

  • Ishikita H, Saenger W, Biesiadka J, Loll B, Knapp E (2006) How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700 and P870. Proc Natl Acad Sci USA 103:9855–9860

    Article  CAS  PubMed  Google Scholar 

  • Jaguar (5.5) Schrödinger, LLC, Portland, OR, 1991–2003

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kinnebrock W (1994) Optimierung mit genetischen und selektiven Algorithmen. Oldenbourg

  • Knox RS, Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77(5):497–501

    Article  CAS  PubMed  Google Scholar 

  • Kong J, White CA, Krylov AI, Sherrill CD, Adamson RD, Furlani TR, Lee MS, Lee AM, Gwaltney SR, Adams TR, Ochsenfeld C, Gilbert ATB, Kedziora GS, Rassolov VA, Maurice DR, Nair N, Shao Y, Besley NA, Maslen PE, Dombroski JP, Dachsel H, Zhang WM, Korambath PP, Baker J, Byrd EFC, Van Voorhis T, Oumi M, Hirata S, Hsu CP, Ishikawa N, Florian J, Warshel A, Johnson BG, Gill PMW, Head-Gordon M, Pople JA (2000) Q-Chem 2.0: a high-performance ab initio electronic structure program package. J Comput Chem 21:1532–1548

    Article  CAS  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Article  CAS  Google Scholar 

  • Lockhart DJ, Boxer SG (1987) Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers. Biochemistry 26:664–668

    Article  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ (1997) Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101:11,280–11,287

    CAS  Google Scholar 

  • MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Madjet ME, Abdurahman A, Renger T (2006) Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110:17,268–17,281

    Article  CAS  Google Scholar 

  • Müh F, Madjet ME, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp EW, Renger T (2007) α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc Natl Acad Sci USA, in press

  • Olson JM (2004) The FMO protein. Photosynth Res 80:181–187

    Article  CAS  PubMed  Google Scholar 

  • Pohlheim H (1999) Evolutionäre Algorithmen. Springer, Berlin Heidelberg

    Google Scholar 

  • Rémigy HW, Hauska G, Müller SA, Tsiotis G (2002) The reaction centre from green sulphur bacteria: progress towards structural elucidation. Photosynth Res 71:91–98

    Article  PubMed  Google Scholar 

  • Renger T, Marcus RA (2002a) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116:9997–10,019

    Article  CAS  Google Scholar 

  • Renger T, Marcus RA (2002b) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106:1809–1819

    Article  CAS  Google Scholar 

  • Renger T, May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: the FMO-complex. J Phys Chem A 102:4381–4391

    Article  CAS  Google Scholar 

  • Scholes GD, Curutchet C, Mennucci B, Cammi R, Tomasi J (2007) How solvent controls electronic energy transfer and light harvesting. J Phys Chem B 111:6978–6982

    Article  CAS  PubMed  Google Scholar 

  • Sheridan RP, Levy RM, Salemme F (1982) α-helix dipole model and electrostatic stabilization of 4-α-helical proteins. Proc Natl Acad Sci USA 79:4545–4549

    Article  CAS  PubMed  Google Scholar 

  • Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comp Chem 19:377–395

    Article  CAS  Google Scholar 

  • Steffen M, Lao K, Boxer S (1994) Dielectric asymmetry in the photosynthetic reaction center. Science 264:810–816

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188:443–454

    Article  CAS  PubMed  Google Scholar 

  • Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H, Aartsma TJ (1998) Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K. J Phys Chem B 102:9577–9582

    Article  CAS  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H (2000) Electron–vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825–5831

    Article  CAS  Google Scholar 

  • Wendling M, Przyjalgowski MA, Gülen D, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H (2002) The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: refining experiments and simulations. Photosynth Res 71:99–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge support by the Deutsche Forschungsgemeinschaft through Emmy-Noether research grant RE 1610 and through the Sonderforschungsbereich 498, TP A7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Renger.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11120-007-9276-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolphs, J., Müh, F., Madjet, M.EA. et al. Calculation of pigment transition energies in the FMO protein. Photosynth Res 95, 197–209 (2008). https://doi.org/10.1007/s11120-007-9248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9248-z

Keywords

Navigation