Skip to main content
Log in

Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC–LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC–LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC–LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC–LH1 complexes, as long-range order appears to be induced only through its role of configuring RC–LH1 complexes into dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdourakhmanov IA, Ganago AO, Erokhin YE, Solov’ev AA, Chugunov VA (1979) Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim Biophys Acta 546(1):183–186. doi:10.1016/0005-2728(79)90180-4

    Article  CAS  PubMed  Google Scholar 

  • Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta 1817(9):1616–1627. doi:10.1016/j.bbabio.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  • Adams PG, Mothersole DJ, Ng IW, Olsen JD, Hunter CN (2011) Monomeric RC–LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides. Biochim Biophys Acta 1807(9):1044–1055. doi:10.1016/j.bbabio.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  • Arnett DC, Moser CC, Dutton PL, Scherer NF (1999) The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J Phys Chem B 103(11):2014–2032. doi:10.1021/jp984464j

    Article  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430(7003):1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Beatty JT, Gest H (1981) Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 129(5):335–340. doi:10.1007/bf00406457

    Article  CAS  Google Scholar 

  • Breton J (1985) Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim Biophys Acta 810(2):235–245. doi:10.1016/0005-2728(85)90138-0

    Article  CAS  Google Scholar 

  • Busselez J, Cottevieille M, Cuniasse P, Gubellini F, Boisset N, LĂ©vy D (2007) Structural basis for the PufX-mediated dimerization of bacterial photosynthetic core complexes. Structure 15(12):1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Chandler DE, Hsin J, Harrison CB, Gumbart J, Schulten K (2008) Intrinsic curvature properties of photosynthetic proteins in chromatophores. Biophys J 95(6):2822–2836. doi:10.1529/biophysj.108.132852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler DE, Gumbart J, Stack JD, Chipot C, Schulten K (2009) Membrane curvature induced by aggregates of LH2s and monomeric LH1s. Biophys J 97(11):2978–2984. doi:10.1016/j.bpj.2009.09.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cogdell R, Fyfe P, Barrett S, Prince S, Freer A, Isaacs N, McGlynn P, Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48(1–2):55–63. doi:10.1007/bf00040996

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39(03):227–324. doi:10.1017/S0033583506004434

    Article  CAS  PubMed  Google Scholar 

  • Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides: II. A study of PufX-membranes. J Biol Chem 280(12):11214–11223. doi:10.1074/jbc.M412089200

    Article  CAS  PubMed  Google Scholar 

  • Crouch LI, Jones MR (2012) Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC–LH1 core complex. Biochim Biophys Acta 1817(2):336–352

    Article  CAS  PubMed  Google Scholar 

  • Crouch LI, Holden-Dye K, Jones MR (2010) Dimerisation of the Rhodobacter sphaeroides RC–LH1 photosynthetic complex is not facilitated by a GxxxG motif in the PufX polypeptide. Biochim Biophys Acta 1797(11):1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Eldridge MD, Madden PA, Frenkel D (1993) Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365(6441):35–37

    Article  CAS  Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP, Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38(21):6834–6845

    Article  CAS  PubMed  Google Scholar 

  • Frese RN, Olsen JD, Branvall R, Westerhuis WHJ, Hunter CN, van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: a key role for PufX. Proc Natl Acad Sci USA 97(10):5197–5202

    Article  CAS  PubMed  Google Scholar 

  • Frese RN, Siebert CA, Niederman RA, Hunter CN, Otto C, van Grondelle R (2004) The long-range organization of a native photosynthetic membrane. Proc Natl Acad Sci USA 101(52):17994–17999

    Article  CAS  PubMed  Google Scholar 

  • Frese RN, Pŕmies JC, Olsen JD, Bahatyrova S, van der Weij-de Wit CD, Aartsma TJ, Otto C, Hunter CN, Frenkel D, van Grondelle R (2008) Protein shape and crowding drive domain formation and curvature in biological membranes. Biophys J 94(2):640–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fulcher TK, Beatty JT, Jones MR (1998) Demonstration of the key role played by the PufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J Bacteriol 180(3):642–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golecki JR, Tadros MH, Ventura S, Oelze J (1989) Intracytoplasmic membrane vesiculation in light-harvesting mutants of Rhodobacter sphaeroides and Rhodobacter capsulatus. FEMS Microbiol Lett 65(3):315–318

    Article  CAS  Google Scholar 

  • Gubellini F, Francia F, Busselez J, Venturoli G, Levy D (2006) Functional and structural analysis of the photosynthetic apparatus of Rhodobacter veldkampii. Biochemistry 45(35):10512–10520

    Article  CAS  PubMed  Google Scholar 

  • Holden-Dye K (2007) Biophysical studies of photosynthetic membrane proteins from Rhodobacter sphaeroides. PhD thesis, University of Bristol

  • Holden-Dye K, Crouch LI, Jones MR (2008) Structure, function and interactions of the PufX protein. Biochim Biophys Acta 1777(7–8):613–630

    Article  CAS  PubMed  Google Scholar 

  • Hsin J, Chipot C, Schulten K (2009a) A glycophorin A-like framework for the dimerization of photosynthetic core complexes. J Am Chem Soc 131(47):17096–17098. doi:10.1021/ja905903n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsin J, Gumbart J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K (2009b) Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. Biophys J 97(1):321–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Ritz T, Damjanović A, Schulten K (1997) Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J Phys Chem B 101(19):3854–3871. doi:10.1021/jp963777g

    Article  CAS  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35(01):1–62

    CAS  PubMed  Google Scholar 

  • Hunter CN, Turner G (1988) Transfer of genes coding for apoproteins of reaction centre and light-harvesting LH1 complexes to Rhodobacter sphaeroides. J Gen Microbiol 134(6):1471–1480. doi:10.1099/00221287-134-6-1471

    CAS  Google Scholar 

  • Hunter CN, McGlynn P, Ashby MK, Burgess JG, Olsen JD (1991) DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rhodobacter sphaeroides: in vivo mapping of the oxygen-regulated puf promoter. Mol Microbiol 5(11):2649–2661. doi:10.1111/j.1365-2958.1991.tb01974.x

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W, Hunter CN (1992) Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 6(9):1173–1184. doi:10.1111/j.1365-2958.1992.tb01556.x

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Heer-Dawson M, Mattioli TA, Hunter CN, Robert B (1994) Site-specific mutagenesis of the reaction centre from Rhodobacter sphaeroides studied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donor. FEBS Lett 339(1–2):18–24. doi:10.1016/0014-5793(94)80376-5

    Article  CAS  PubMed  Google Scholar 

  • Jungas C, Ranck J-L, Rigaud J-L, Joliot P, Vermeglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18(3):534–542

    Article  CAS  PubMed  Google Scholar 

  • Kiley PJ, Varga A, Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170(3):1103–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klug G, Cohen SN (1988) Pleiotropic effects of localized Rhodobacter capsulatus puf operon deletions on production of light-absorbing pigment–protein complexes. J Bacteriol 170(12):5814–5821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu LN, Sturgis JN, Scheuring S (2011) Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. J Struct Biol 173(1):138–145. doi:10.1016/j.jsb.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  • McGlynn P, Hunter CN, Jones MR (1994) The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett 349(3):349–353. doi:10.1016/0014-5793(94)00701-2

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Neil Hunter C, Bullough PA (2005) The 8.5 Å projection structure of the core RC–LH1–PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349(5):948–960

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Bullough PA, Hunter CN (2008) Three-dimensional reconstruction of a membrane-bending complex: the RC–LH1–PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283(20):14002–14011. doi:10.1074/jbc.M800625200

    Article  CAS  PubMed  Google Scholar 

  • Rafferty CN, Clayton RK (1978) Properties of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin films: linear dichroism and low temperature spectra. Biochim Biophys Acta 502(1):51–60. doi:10.1016/0005-2728(78)90131-7

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustris. Science 302(5652):1969–1972

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S (2006) AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. Curr Opin Chem Biol 10(5):387–393. doi:10.1016/j.cbpa.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Francia F, Busselez J, Melandri BA, Rigaud J-L, Levy D (2004) Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J Biol Chem 279(5):3620–3626. doi:10.1074/jbc.M310050200

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Levy D, Rigaud JL (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712(2):109–127

    Article  CAS  PubMed  Google Scholar 

  • Semchonok DA, Chauvin J-P, Frese RN, Jungas C, Boekema EJ (2012) Structure of the dimeric RC–LH1–PufX complex from Rhodobaca bogoriensis investigated by electron microscopy. Philos Trans R Soc Lond B 367(1608):3412–3419. doi:10.1098/rstb.2012.0063

    Article  CAS  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN, Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23(4):690–700

    Article  CAS  PubMed  Google Scholar 

  • Sturgis JN, Niedermann RA (1996) The effect of different levels of the B800-850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides. Arch Microbiol 165(4):235–242

    Article  CAS  PubMed  Google Scholar 

  • Sturgis JN, Hunter CN, Niederman RA (1988) Spectra and extinction coefficients of near-infrared absorption bands in membranes of Rhodobacter sphaeroides mutants lacking light-harvesting and reaction center complexes. Photochem Photobiol 48(2):243–247. doi:10.1111/j.1751-1097.1988.tb02817.x

    Article  CAS  Google Scholar 

  • Tiede DM, Choquet Y, Breton J (1985) Geometry for the primary electron donor and the bacteriopheophytin acceptor in Rhodopseudomonas viridis photosynthetic reaction centers. Biophys J 47(3):443–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukatani Y, Matsuura K, Masuda S, Shimada K, Hiraishi A, Nagashima KP (2004) Phylogenetic distribution of unusual triheme to tetraheme cytochrome subunit in the reaction center complex of purple photosynthetic bacteria. Photosynth Res 79(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA, Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC–LH1 at 25 Å. J Mol Biol 282(4):833–845. doi:10.1006/jmbi.1998.2050

    Article  CAS  PubMed  Google Scholar 

  • Westerhuis WHJ, Sturgis JN, Ratcliffe EC, Hunter CN, Niederman RA (2002) Isolation, size estimates, and spectral heterogeneity of an oligomeric series of light-harvesting 1 complexes from Rhodobacter sphaeroides. Biochemistry 41(27):8698–8707. doi:10.1021/bi011663b

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kinga Sznee or Raoul N. Frese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sznee, K., Crouch, L.I., Jones, M.R. et al. Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. Photosynth Res 119, 243–256 (2014). https://doi.org/10.1007/s11120-013-9949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9949-4

Keywords

Navigation