Skip to main content
Log in

Selective and differential optical spectroscopies in photosynthesis

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic pigments are inherently intense optical absorbers and have strong polarisation characteristics. They can also luminesce strongly. These properties have led optical spectroscopies to be, quite naturally, key techniques in photosynthesis. However, there are typically many pigments in a photosynthetic assembly, which when combined with the very significant inhomogeneous and homogeneous linewidths characteristic of optical transitions, leads to spectral congestion. This in turn has made it difficult to provide a definitive and detailed electronic structure for many photosynthetic assemblies. An electronic structure is, however, necessary to provide a foundation for any complete description of fundamental processes in photosynthesis, particularly those in reaction centres. A wide range of selective and differential spectral techniques have been developed to help overcome the problems of spectral complexity and congestion. The techniques can serve to either reduce spectral linewidths and/or extract chromophore specific information from unresolved spectral features. Complementary spectral datasets, generated by a number of techniques, may then be combined in a ‘multi-dimensional’ theoretical analysis so as to constrain and define effective models of photosynthetic assemblies and their fundamental processes. A key example is the work of Renger and his group (Raszewski, Biophys J 88(2):986–998, 2005) on PS II reaction centre assemblies. This article looks to provide an overview of some of these techniques and indicate where their strengths and weaknesses may lie. It highlights some of our own contributions and indicates areas where progress may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R (2012) Site energies of active and inactive pheophytins in the reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 116(12):3890–3899. doi:10.1021/Jp3007624

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84(1–3):173–180

    Article  PubMed  CAS  Google Scholar 

  • Avarmaa RA, Rebane KK (1985) High-resolution optical spectra of chlorophyll molecules. Spectrochim Acta 41A(12):1365–1380

    CAS  Google Scholar 

  • Baxter RHG, Krausz E, Norris JR (2006) Photoactivation of the photosynthetic reaction center of blastochloris viridis in the crystalline state. J Phys Chem B 110(2):1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101(2–3):157–170. doi:10.1007/S11120-009-9439-X

    Article  PubMed  CAS  Google Scholar 

  • Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL, Messerschmidt M, Barty A, White TA, Kassemeyer S, Kirian RA, Seibert MM, Montanez PA, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner SM, Philipp HT, Tate MW, Hromalik M, Koerner LJ, van Bakel N, Morse J, Ghonsalves W, Arnlund D, Bogan MJ, Caleman C, Fromme R, Hampton CY, Hunter MS, Johansson LC, Katona G, Kupitz C, Liang MN, Martin AV, Nass K, Redecke L, Stellato F, Timneanu N, Wang DJ, Zatsepin NA, Schafer D, Defever J, Neutze R, Fromme P, Spence JCH, Chapman HN, Schlichting I (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092):362–364. doi:10.1126/Science.1217737

    Article  PubMed  CAS  Google Scholar 

  • Boxer SG (2009) Stark realities. J Phys Chem B 113(10):2972–2983. doi:10.1021/Jp8067393

    Article  PubMed  CAS  Google Scholar 

  • Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48:213–242. doi:10.1146/Annurev.Physchem.48.1.213

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Debus RJ, Junge W (2004) Time-resolved oxygen production by PSII: chasing chemical intermediates. Bba-Bioenergetics 1655(1–3):184–194. doi:10.1016/J.Bbabio.2003.06.001

    Article  PubMed  CAS  Google Scholar 

  • Cox N, Hughes JL, Steffen R, Smith PJ, Rutherford AW, Pace RJ, Krausz E (2009) Identification of the Q(Y) excitation of the primary electron acceptor of photosystem II: CD determination of its coupling environment. J Phys Chem B 113(36):12364–12374. doi:10.1021/Jp808796x

    Article  PubMed  CAS  Google Scholar 

  • Cox N, Hughes J, Rutherford AW, Krausz E (2010) On the assignment of PSHB in D1/D2/cytb(559) reaction centers. Phys Proc 3(4):1601–1605. doi:10.1016/J.Phpro.2010.01.227

    Article  CAS  Google Scholar 

  • Dawlaty JM, Ishizaki A, De AK, Fleming GR (2012) Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. Philos T R Soc A 370(1972):3672–3691. doi:10.1098/Rsta.2011.0207

    Article  Google Scholar 

  • Debus RJ (2008) Protein ligation of the photosynthetic oxygen-evolving center. Coord Chem Rev 252(3–4):244–258. doi:10.1016/J.Ccr.2007.09.022

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Michel H (1989) The photosynthetic reaction center from the purple Bacterium Rhodopseudomonas viridis. Science 245(4925):1463–1473. doi:10.1126/science.245.4925.1463

    Article  PubMed  CAS  Google Scholar 

  • den Hartog FTH, Dekker JP, van Grondelle R, Völker S (1998) Spectral distributions of “Trap” pigments in the RC, CP47, and CP47-RC complexes of photosystem II at low temperature: a fluorescence line-narrowing and hole-burning study. J Phys Chem B 102(52):11007–11016

    Article  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ, Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281

    Article  PubMed  CAS  Google Scholar 

  • Fischer G (1984) Vibronic coupling: the interaction between the electronic and nuclear motions. Academic Press, Waltham

  • Frese RN, Germano M, de Weerd FL, van Stokkum IHM, Shkuropatov AY, Shuvalov VA, van Gorkom HJ, van Grondelle R, Dekker JP (2003) Electric field effects on the chlorophylls, pheophytins, and β-carotenes in the reaction center of photosystem II. Biochemistry 42:9205–9213

    Article  PubMed  CAS  Google Scholar 

  • Gamelin DR, Kirk ML, Stemmler TL, Pal S, Armstrong WH, Pennerhahn JE, Solomon EI (1994) Electronic-structure and spectroscopy of manganese catalase and Di-Mu-Oxo [Mn(Iii)Mn(Iv)] model complexes. J Am Chem Soc 116(6):2392–2399

    Article  CAS  Google Scholar 

  • Gouterman M, Snyder LC, Wagniere GH (1963) Spectra of Porphyrins.2. 4 Orbital Model. J Mol Spectrosc 11(2):108

    Article  CAS  Google Scholar 

  • Houssier C, Sauer K (1970) Circular dichriosm and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc 92(4):779–791

    Article  CAS  Google Scholar 

  • Hughes JL, Krausz E (2007a) Electronic Spectroscopy. In: Scott RA, Lukehart CM (eds) Application of physical methods to inorganic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  • Hughes JL, Krausz E (2007b) Novel characteristics of persistent spectral hole-burning and hole-filling in photosystem II core complexes. J Lumin 127:239–244

    Article  CAS  Google Scholar 

  • Hughes JL, Pace RJ, Krausz E (2004a) The exciton contribution to the Faraday B term MCD of molecular dimers. Chem Phys Lett 385:116–121

    Article  CAS  Google Scholar 

  • Hughes JL, Prince BJ, Krausz E, Smith PJ, Pace RJ, Riesen H (2004b) Highly efficient spectral hole-burning in oxygen-evolving photosystem II preparations. J Phys Chem B 108:10428–10439

    Article  CAS  Google Scholar 

  • Hughes JL, Razeghifard R, Logue M, Oakley A, Wydrzynski T, Krausz E (2006a) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658

    Article  PubMed  CAS  Google Scholar 

  • Hughes JL, Smith P, Pace R, Krausz E (2006b) Charge separation in photosystem ii core complexes induced by 690–730 nm excitation at 1.7 K. Biochim Biophys Acta 1757:841–851

    Article  PubMed  CAS  Google Scholar 

  • Hughes JL, Smith PJ, Pace RJ, Krausz E (2006c) Spectral hole burning at the low-energy absorption edge of photosystem II core complexes. J Lumin 119–120:298–303

    Article  Google Scholar 

  • Hughes JL, Smith PJ, Pace RJ, Krausz E (2007) Low energy absorption and luminescence of higher plant photosystem II core samples. J Lumin 122–123:284–287

    Article  Google Scholar 

  • Hughes JL, Cox N, Rutherford AW, Krausz E, Lai TL, Boussac A, Sugiura M (2010) D1 protein variants in Photosystem II from Thermosynechococcus elongatus studied by low temperature optical spectroscopy. Bba-Bioenergetics 1797(1):11–19. doi:10.1016/J.Bbabio.2009.07.007

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki A, Fleming GR (2012) Quantum coherence in photosynthetic light harvesting. Annu Rev Condens Matter Phys 3:333–361. doi:10.1146/Annurev-Conmatphys-020911-125126

    Article  CAS  Google Scholar 

  • Jankowiak R, Hayes JM, Small GJ (1993) Spectral hole-burning spectroscopy in amorphous molecular solids and proteins. Chem Rev 93:1471–1502

    Article  CAS  Google Scholar 

  • Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T (2011) Site selective and single complex laser-based spectroscopies: a window on excited state electronic structure, excitation energy transfer, and electron-phonon coupling of selected photosynthetic complexes. Chem Rev 111(8):4546–4598. doi:10.1021/cr100234j

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduciton of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186

    Article  PubMed  CAS  Google Scholar 

  • Krausz E (1993) A single-beam approach to the absorption spectroscopy of microcrystals. Aust J Chem 46(7):1041–1054

    Article  CAS  Google Scholar 

  • Krausz E, Peterson Årsköld S (2005) Identifying redox-active chromophores in photosystem II by low-temperature optical spectroscopies. Artif Photosynth, [Boden Res Conf]:87–107

  • Krausz E, Hughes JL, Smith P, Pace R, Peterson Årsköld S (2005a) Oxygen-evolving photosysten II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem Photobiol Sci 4:744–753

    Article  PubMed  CAS  Google Scholar 

  • Krausz E, Hughes JL, Smith PJ, Pace RJ, Peterson Årsköld S (2005b) Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. Photosynth Res 84(1–3):193–199

    Article  PubMed  CAS  Google Scholar 

  • Krausz E, Cox N, Arskold SP (2008) Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes. Photosynth Res 98(1–3):207–217. doi:10.1007/S11120-008-9328-8

    Article  PubMed  CAS  Google Scholar 

  • Lao KQ, Moore LJ, Zhou HL, Boxer SG (1995) Higher-order stark spectroscopy - polarizability of photosynthetic pigments. J Phys Chem 99(2):496–500

    Article  CAS  Google Scholar 

  • Larkum AWD (2012) Harvesting solar energy through natural or artificial photosynthesis: scientific, social, political and economic implications. In: Wydrzynski TJ, Hillier W (eds) Molecular Solar Fuels. RSC Energy and Environment Series vol 5. Royal Society of Chemistry, Cambridge, pp 1–19. doi:10.1039/9781849733038-00001

  • Lee H, Cheng YC, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316(5830):1462–1465. doi:10.1126/Science.1142188

    Article  PubMed  CAS  Google Scholar 

  • Maksimov EG, Schmitt F-J, H√§tti P, Klementiev KE, Paschenko VZ, Renger G, Rubin AB (2013) Anomalous temperature dependence of the fluorescence lifetime of phycobiliproteins. Laser Phys Lett 10(5):055602

    Article  Google Scholar 

  • Middendorf TR, Mazzola LT, Gaul DF, Schenck CC, Boxer SG (1991) Photochemical hole-burning spectroscopy of a photosynthetic reaction center mutant with altered charge separation kinetics—properties and decay of the initially excited-state. J Phys Chem 95(24):10142–10151

    Article  CAS  Google Scholar 

  • Moser CC, Page CC, Dutton PL (2005) Tunneling in PSII. Photochem Photobiol Sci 4(12):933–939. doi:10.1039/B507352a

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Cherepanov DA, Haumann M, Junge W (1996) Photosystem II of green plants: topology of core pigments and redox cofactors as inferred from electrochromic difference spectra. Biochemistry 35(9):3093–3107

    Article  PubMed  CAS  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci 84:109–112

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T (2013) Monitoring the reactions of photosynthetic water oxidation using infrared spectroscopy. Biomed Spectrosc Imaging 2(2):115–128. doi:10.3233/bsi-130040

    Google Scholar 

  • Novoderezhkin VI, Dekker JP, van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of stark spectra with modified Redfield theory. Biophys J 93(4):1293–1311. doi:10.1529/biophysj.106.096867

    Article  PubMed  CAS  Google Scholar 

  • Novoderezhkin VI, Romero E, Dekker JP, van Grondelle R (2011) Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. ChemPhysChem 12(3):681–688. doi:10.1002/Cphc.201000830

    Article  PubMed  CAS  Google Scholar 

  • Pace R, Krausz E (2012) Solar energy utilisation. In: Wydrzynski TJ, Hillier W (eds) Molecular solar fuels. RSC energy and environment series vol 5. Royal society of chemistry, Cambridge, pp 20-38. doi:10.1039/9781849733038-00020

  • Parson WW, Warshel A (1987) Spectroscopic properties of photosynthetic reaction centres. 2. Application of the theory to Rhodopseudomonas viridis. J Am Chem Soc 109:6152–6163

    Article  CAS  Google Scholar 

  • Peterson Årsköld S, Masters VM, Prince BJ, Smith PJ, Pace RJ, Krausz E (2003) Optical spectra of synechocystis and spinach photosystem II preparations at 1.7 K: Identification of the D1-pheophytin energies and stark shifts. J Am Chem Soc 125 (43):13063–13074

  • Peterson Årsköld S, Prince BJ, Krausz E, Smith PJ, Pace RJ, Picorel R, Seibert M (2004) Low-temperature spectroscopy of fully active PSII cores. Comparisons with CP43, CP47, D1/D2/cyt b559 fragments. J Lumin 108 (1–4):97–100

  • Pettai H, Oja V, Freiberg A, Laisk A (2005) Photosynthetic activity of far-red light in green plants. Biochim Biophys Acta 1708:311–321

    Article  PubMed  CAS  Google Scholar 

  • Piepho SB, Schatz PN (1983) Group theory in spectroscopy with applications to magnetic circular dichroism. Wiley-Interscience, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  • Prince BJ, Krausz E, Peterson Årsköld S, Smith PJ, Pace RJ (2004) Persistent spectral hole burning in oxygen-evolving photosystem II from cyanobacteria and higher plants. J Lumin 108:101–105

    Article  CAS  Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Purchase R, Volker S (2009) Spectral hole burning: examples from photosynthesis. Photosynth Res 101(2–3):245–266. doi:10.1007/s11120-009-9484-5

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130(13):4431–4446. doi:10.1021/Ja7099826

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J 88(2):986–998

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Diner BA, Schlodder E, Renger T (2008) Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. Biophys J 95(1):105–119. doi:10.1529/Biophysj.107.123935

    Article  PubMed  CAS  Google Scholar 

  • Razeghifard MR, Chen M, Hughes JL, Freeman J, Krausz E, Wydrzynski T (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry 44:11178–11187

    Article  PubMed  CAS  Google Scholar 

  • Rebane KK, Avarmaa RA (1982) Sharp line vibronic spectra of chlorophyll and its derivatives in solid-solutions. Chem Phys 68(1–2):191–200. doi:10.1016/0301-0104(82)85094-5

    Article  CAS  Google Scholar 

  • Rebane LA, Gorokhovskii AA, Kikas JV (1982) Low-temperature spectroscopy of organic-molecules in solids by photochemical hole burning. Appl Phys B-Photo 29(4):235–250. doi:10.1007/Bf00689182

    Article  Google Scholar 

  • Reimers J, Cai LS, Kobayashi.R., Ratsep M, Freiberg A, Krausz E (2013) Assignment of the Q-bands of Chlorophyll; Coherence loss via Qx–Qy Mixing. Scientific Reports (submitted)

  • Renger T (2004) Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift. Phys Rev Lett 93(18):188101–188104

    Article  PubMed  Google Scholar 

  • Renger T, Schlodder E (2010) Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra. ChemPhysChem 11(6):1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Reppert M, Acharya K, Neupane B, Jankowiak R (2010a) Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignment. J Phys Chem B 114(36):11884–11898. doi:10.1021/Jp103995h

    Article  PubMed  CAS  Google Scholar 

  • Reppert M, Naibo V, Jankowiak R (2010b) Modeling study of non-line-narrowed hole-burned spectra in weakly coupled dimers and multi-chromophoric molecular assemblies. Chem Phys 367(1):27–35. doi:10.1016/J.Chemphys.2009.10.013

    Article  CAS  Google Scholar 

  • Romero E, van Stokkum IHM, Novoderezhkin VI, Dekker JP, van Grondelle R (2010) Two different charge separation pathways in photosystem II. Biochemistry 49(20):4300–4307. doi:10.1021/Bi1003926

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Diner BA, Nixon PJ, Coleman WJ, Dekker JP, van†Grondelle R (2012) Mixed exciton, äìcharge-transfer states in photosystem II: stark spectroscopy on site-directed mutants. Biophys J 103(2):185–194. doi:10.1016/j.bpj.2012.06.026

    Article  PubMed  CAS  Google Scholar 

  • Schlodder E, Renger T, Raszewski G, Coleman WJ, Nixon PJ, Cohen RO, Diner BA (2008) Site-directed mutations at D1-Thr179 of photosystem II in Synechocystis sp. PCC 6803 modify the spectroscopic properties of the accessory chlorophyll in the D1-branch of the reaction center. Biochemistry

  • Seibert M (1993) Biochemical, biophysical, and structural characterization of the isolated photosystem II reaction center complex. In: Deisenhofer J, Norris J (eds) The photosynthetic reaction center, vol 1. Academic Press, New York, pp 319–356

    Chapter  Google Scholar 

  • Smith DK (2008) Laser-driven light source. USA Patent

  • Steffen R, Jackman K, Krausz E (2008) Design and application of a high-precision, broad spectral range CCD-based absorption spectrometer with millisecond time resolution. Meas Sci Technol 19 (7). doi 10.1088/0957-0233/19/7/075601

  • Szczepaniak M, Sander J, Nowaczyk M, Muller MG, Rogner M, Holzwarth AR (2009) Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys J 96(2):621–631. doi:10.1016/J.Bpj.2008.09.036

    Article  PubMed  CAS  Google Scholar 

  • Thapper A, Mamedov F, Mokvist F, Hammarstrom L, Styring S (2009) Defining the far-red limit of photosystem II in spinach. Plant Cell 21(8):2391–2401. doi:10.1105/Tpc.108.064154

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 473 (7345):55–U65. doi: 10.1038/Nature09913

  • van Mieghem FJE, Satoh K (1058) Rutherford AW (1991) A chlorophyll tilted 30 degrees relative to the membrane in the Photosystem II reaction centre. Biochim Biophys Acta 3:379–385

    Google Scholar 

  • Vasil’ev S, Shen J-R, Kamiya N, Bruce D (2004) The orientations of core antenna chlorophylls in photosystem II are optimized to maximize the quantum yield of photosynthesis. FEBS Lett 561(1–3):111–116

    Article  PubMed  Google Scholar 

  • Vassiliev S, Lee C-I, Brudvig GW, Bruce D (2002) Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged photosystem II core complexes from synechocystis. Biochemistry 41(40):12236–12243

    Article  PubMed  CAS  Google Scholar 

  • Warshel A, Parson WW (1987) Spectroscopic properties of photosynthetic reaction centres. 1. theory. J Am Chem Soc 109:6143–6152

    Article  CAS  Google Scholar 

  • Xiong J, Subramaniam S, Govindjee (1998) A knowledge-based three dimensional model of the photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 56(3):229–254

    Article  CAS  Google Scholar 

  • Zevenhuijzen D, Zandstra PJ (1984) Absorption and magnetic circular dichroism of chlorophyll a and b dimers. Biophys Chem 19:121–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

EK would like to thank Govindjee for informing him of work on the long wavelength photoactivity of plant leaves and his unreserved good humour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmars Krausz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krausz, E. Selective and differential optical spectroscopies in photosynthesis. Photosynth Res 116, 411–426 (2013). https://doi.org/10.1007/s11120-013-9881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9881-7

Keywords

Navigation