Skip to main content
Log in

Characterization of photosystem I from spinach: effect of solution pH

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Our previous work has demonstrated the isolation of photosystem I (PSI) from spinach using ultrafiltration with a final purity of 84 %. In order to get a higher purity of PSI and more importantly to develop a practical bioseparation process, key physiochemical properties of PSI and their dependence on operational parameters must be assessed. In this study, the effect of solution pH, one of the most important operating parameters for membrane process, on the property of PSI was examined. Following the isolation of crude PSI from spinach using n-dodecyl-beta-d-maltoside as detergent, the isoelectric point, aggregation size, zeta potential, low-temperature fluorescence, atomic force microscopy imaging, secondary structure, and thermal stability were determined. Solution pH was found to have a significant effect on the activity, aggregation size and thermal stability of PSI. The results also suggested that the activity of PSI was related to its aggregation size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

DDM:

n-Dodecyl-beta-d-maltoside

PMSF:

Phenylmethane-sulfonyl fluoride

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DCIP:

2,6-Dichloroindophenol

MV:

Methylviologen

EDTA:

Ethylenediaminetetraacetate

PES:

Polyethersulfone

IEF:

Isoelectric focusing

IEP:

Isoelectric point

AFM:

Atomic force microscopy

CD:

Circular dichroism

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

DLS:

Dynamic light scattering

References

  • Andersen B, Scheller HV, Møller BL (1992) The PSI-E subunit of photosystem I binds ferredoxini NADP+ oxidoreductase. FEBS Lett 311:169–173

    Article  PubMed  CAS  Google Scholar 

  • Carpentier R, Larue B, Leblanc RM (1984) Photoacoustic spectroscopy of Anacystis nidulans. III. Detection of photosynthetic activities. Arch Biochem Biophys 228:534–543

    Article  PubMed  CAS  Google Scholar 

  • Chang CT, Wu CC, Yang JT (1978) Circular dichroic analysis of protein conformation: inclusion of the β-turn. Anal Biochem 91:13–31

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359

    Article  PubMed  CAS  Google Scholar 

  • Engelmann E, Tagliabue T, Karapetyan NV, Garlaschi FM, Zucchelli G, Jennings RC (2001) CD spectroscopy provides evidence for excitonic interactions involving red-shifted chlorophyll forms in photosystem I. FEBS Lett 499:112–115

    Article  PubMed  CAS  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science. W H Freeman and Company, New York, pp 510–513

    Google Scholar 

  • Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ (2002) Imaging and manipulation of biological structures with the AFM. Micron 33:385–397

    Article  PubMed  CAS  Google Scholar 

  • Ge BS, Yang F, Yu DY, Liu S, Xu H (2010) Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS ONE 5:1–9

    Google Scholar 

  • Ghosh R (2005) Protein bioseparation using ultrafiltration. Imperial College Press, London, pp 15–16

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kiley P, Zhao XJ, Vaughn M, Baldo MA, Bruce BD, Zhang SG (2005) Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol 3:1180–1186

    Article  CAS  Google Scholar 

  • Komiyama T, Miwa M, Yatabe T, Ikeda H (1984) A circular dichroism study on thermal denaturation of a dimeric globular protein, Streptomyces subtilisin inhibitor. J Biochem 95:1569–1575

    PubMed  CAS  Google Scholar 

  • Lagoutte B, Vallon O (1992) Purification and membrane topology of PSI-D and PSI-E, two subunits of the photosystem I reaction center. Eur J Biochem 205:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Liu JG, Lu JR, Zhao XB, Lu JR, Cui ZF (2007) Separation of glucose oxidase and catalase using ultrafiltration with 300-kDa polyethersulfone membranes. J Membr Sci 299:222–228

    Article  CAS  Google Scholar 

  • Liu JG, Yang J, Xu H, Lu JR, Cui ZF (2010) A new membrane based process to isolate immunoglobulin from chicken egg yolk. Food Chem 122:747–752

    Article  CAS  Google Scholar 

  • Liu JG, Yin MM, Wang M, Zhang XF, Ge BS, Liu S, Lu JR, Cui ZF (2011a) A novel membrane based process to isolate photosystem-I membrane complex from spinach. Photosynth Res 107:187–193

    Article  PubMed  CAS  Google Scholar 

  • Liu JG, Yin MM, Zhu H, Lu LuJR, Cui ZF (2011b) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15:221–226

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Vaughn M, Bruce BD, Koutsopoulos S, Zhang SG (2009) Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J Phys Chem B 113:75–83

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Zhang SG, Koutsopoulos S (2010) Enhanced electron transfer activity of photosystem I by polycations in aqueous solution. Biomacromolecules 11:3152–3157

    Article  CAS  Google Scholar 

  • Merkus HG (2009) Particle size measurements. Chapter 12: Dynamic light scattering. Springer, Berlin, pp 299–317

    Google Scholar 

  • Rögner M, Nixon PJ, Diner BA (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 265:6189–6196

    PubMed  Google Scholar 

  • Ruan X, Wei J, Xu Q, Wang JS, Gong YD, Zhang XF, Kuang TY, Zhao NM (2000) Comparison of the effects of Triton X-100 treatment on the protein secondary structure of photosystem I and photosystem II studied by FT-IR spectroscopy. J Mol Struct 525:97–106

    Article  CAS  Google Scholar 

  • Tamura N, Itoh S, Yamamoto Y, Nishimura M (1981) Electrostatic interaction between plastocyanin and P700 in the electron transfer reaction of photosystem I-enriched particles. Plant Cell Physiol 22:603–612

    CAS  Google Scholar 

  • Tjus SE, Møller BL, Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116:755–764

    Article  PubMed  CAS  Google Scholar 

  • Tsiotis G, Nitschke W, Haase W, Michel H (1993) Purification and crystallization of photosystem I complex from a phycobilisome-less mutant of the cyanobacterium Synechococcus PCC 7002. Photosynth Res 35:285–297

    Article  CAS  Google Scholar 

  • Tsiotis G, Haase W, Engel A, Michel H (1995) Isolation and structural characterization of trimeric cyanobacterial photosystem I complex with the help of recombinant antibody fragments. Eur J Biochem 231:823–830

    Article  PubMed  CAS  Google Scholar 

  • Wan YH, Ghosh R, Cui ZF (2002) High-resolution plasma protein fractionation using ultrafiltration. Desalination 144:301–306

    Article  CAS  Google Scholar 

  • Wan YH, Lu JR, Cui ZF (2006) Separation of lusozyme from chicken egg white using ultrafiltration. Sep Purif Technol 48:133–142

    Article  CAS  Google Scholar 

  • Wenk S, Kruip J (2000) Novel, rapid purification of the membrane protein photosystem I by high-performance liquid chromatography on porous materials. J Chromatogr B 737:131–142

    Article  CAS  Google Scholar 

  • Yang ZL, Su XH, Wu F, Gong YD, Kuang TY (2005a) Effect of phosphatidylglycerol on molecular organization of photosystem I. Biophys Chem 115:19–27

    Article  PubMed  CAS  Google Scholar 

  • Yang ZL, Su XH, Wu F, Gong YD, Kuang TY (2005b) Photochemical activities of plant photosystem I particles reconstituted into phosphatidylglycerol liposomes. J Photochem Photobiol B 78:125–134

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Wei J, Robert C (2000) Degradation of the photosystem I complex during photoinhibition. Photochem Photobiol 72:508–512

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of National Natural Science Founds of China (no. 20906104), the Doctoral Foundation of Shandong Province (no. BS2009SW029), and the Fundamental Research for the Central Universities. Special thanks to Prof. Shuguang Zhang (Center for Biomedical Engineering, Massachusetts Institute of Technology) for his constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhang, X., Wang, M. et al. Characterization of photosystem I from spinach: effect of solution pH. Photosynth Res 112, 63–70 (2012). https://doi.org/10.1007/s11120-012-9737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9737-6

Keywords

Navigation