Skip to main content
Log in

Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only ~10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(B)Chl:

(Bacterio-)Chlorophyll

Proto-IX:

Protoporphyrin IX

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Garcia-Gil LJ (1994) Separation of bacteriochlorophyll homologs from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth Res 41:157–164

    Article  CAS  Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard N-U, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411

    Article  PubMed  CAS  Google Scholar 

  • Caple MB, Chow H, Strouse CE (1978) Photosynthetic pigments of green sulfur bacteria: the esterifying alcohols of bacteriochlorophylls c from Chlorobium limicola. J Biol Chem 253:6730–6737

    PubMed  CAS  Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ, Hartman PE (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76

    PubMed  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Google Scholar 

  • Elmlund H, Lundqvist J, Al-Karadaghi S, Hansson M, Hebert H, Lindahl M (2008) A new cryo-EM single-particle ab initio reconstruction method visualizes secondary structure elements in an ATP-fueled AAA+ motor. J Mol Biol 375:934–947

    Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122

    Google Scholar 

  • Frigaard N-U, Bryant DA (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes, Microbiology Monographs, vol 2. Springer, Berlin, pp 79–114

  • Frigaard N-U, Ormerod J (1995) Hydrophobic modification of antenna chlorophyll in Chlorobium during growth with acetylene. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol I. Kluwer, Dordrecht, pp 163–166

    Google Scholar 

  • Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349

    Article  CAS  Google Scholar 

  • Frigaard N-U, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Sakuragi Y, Bryant DA (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods Mol Biol 274:325–340

    PubMed  CAS  Google Scholar 

  • Frigaard N-U, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Maresca JA, Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 201–221

    Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, Vonwettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, bchI, and bchD genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92:1941–1944

    Article  PubMed  CAS  Google Scholar 

  • Gibson LCD, Jensen PE, Hunter CN (1999) Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 337:243–251

    Article  PubMed  CAS  Google Scholar 

  • Gomez Maqueo Chew A, Bryant DA (2007a) Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J Biol Chem 282:2967–2975

    Google Scholar 

  • Gomez Maqueo Chew A, Bryant DA (2007b) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-82 and C-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  PubMed  Google Scholar 

  • Hinchigeri SB, Hundle B, Richards WR (1997) Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. FEBS Lett 407:337–342

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LC, Henningsen KW, Hunter CN (1996) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271:16662–16667

  • Jensen PE, Gibson LC, Hunter CN (1998) Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem J 334:335–344

    Google Scholar 

  • Jensen PE, Gibson LC, Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 339:127–134

    Article  PubMed  CAS  Google Scholar 

  • Johnson ET, Schmidt-Dannert C (2008) Characterization of three homologs of the large subunit of the magnesium chelatase of Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX methyltransferase. J Biol Chem 283:27776–27784

    Article  PubMed  CAS  Google Scholar 

  • Karger GA, Reid JD, Hunter CN (2001) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40:9291–9299

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C (2003) High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol 69:4875–4883

    Article  PubMed  CAS  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ponsatí MR, Frigaard N-U, Ormerod JG, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Inoue K, Masuda M, Nagayama M, Tamaki A, Ohta H, Shimada H, Takamiya K (1999) Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an anaerobic acidophilic bacterium Acidophilum rubrum. J Biol Chem 274:33594–33600

    Article  PubMed  CAS  Google Scholar 

  • Naylor GW, Addlesee HA, Gibson LCD, Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynthesis Res 62:121–139

    Article  CAS  Google Scholar 

  • Nomata J, Swem LR, Bauer CE, Fujita Y (2005) Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim Biophys Acta 1708:229–237

    Article  PubMed  CAS  Google Scholar 

  • Oostergetel GT, Reus M, Gomez Maqueo Chew A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439

    PubMed  CAS  Google Scholar 

  • Petersen BL, Jensen PE, Gibson LC, Stummann BM, Hunter CN, Henningsen KW (1998) Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol 180:699–704

  • Reid JD, Hunter CN (2002) Current understanding of the function of magnesium chelatase. Biochem Soc Trans 30:643–645

    Article  PubMed  CAS  Google Scholar 

  • Reid JD, Hunter CN (2004) Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J Biol Chem 279:26893–26899

    Article  PubMed  CAS  Google Scholar 

  • Reid JD, Siebert CA, Bullough PA, Hunter CN (2003) The ATPase activity of the ChlI subunit of magnesium chelatase and formation of a heptameric AAA(+) ring. Biochemistry 42:6912–6920

    Article  PubMed  CAS  Google Scholar 

  • Sawicki A, Willows RD (2008) Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex. J Biol Chem 283:1294–1302

    Google Scholar 

  • Shepherd M, McLean S, Hunter CN (2005) Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J 272:4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Sirijovski N, Lundqvist J, Rosenbäck M, Elmlund H, Al-Karadaghi S, Willows RD, Hansson M (2008) Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit. J Biol Chem 283:11652–11660

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva EV, Ormerod JG, Bryant DA (2002) Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme. Photosynth Res 71:69–81

    Article  PubMed  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:2583–2588

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    Article  CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidophilum rubrum. Plant Cell Physiol 37:889–893

    CAS  Google Scholar 

  • Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333

    PubMed  CAS  Google Scholar 

  • Willows RD (2003) Biosynthesis of chlorophylls from protoporphyrin IX. Nat Prod Rep 20:327–341

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus bchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273:34206–34213

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Gibson LCD, Kanangara CG, Hunter CN, von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235:438–443

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Lake V, Roberts TH, Beale SI (2003) Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J Bacteriol 185:3249–3258

    Article  PubMed  CAS  Google Scholar 

  • Yaronskaya E, Grimm B (2006) The pathway from 5-aminolevulinic acid to protochlorophyllide and protoheme. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 173–188

    Google Scholar 

Download references

Acknowledgment

This research was supported by grant DE-FG02-94ER20137 from the U. S. Department of Energy to D. A. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez Maqueo Chew, A., Frigaard, NU. & Bryant, D.A. Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum . Photosynth Res 101, 21–34 (2009). https://doi.org/10.1007/s11120-009-9460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9460-0

Keywords

Navigation