Skip to main content
Log in

Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: II. Femto- and picosecond charge separation in PSII D1/D2/Cyt b559 complex

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In Part I of the article, a review of recent data on electron-transfer reactions in photosystem II (PSII) and bacterial reaction center (RC) has been presented. In Part II, transient absorption difference spectroscopy with 20-fs resolution was applied to study the primary charge separation in PSII RC (DI/DII/Cyt b 559 complex) excited at 700 nm at 278 K. It was shown that the initial electron-transfer reaction occurs within 0.9 ps with the formation of the charge-separated state P680+ChlD1 , which relaxed within 14 ps as indicated by reversible bleaching of 670-nm band that was tentatively assigned to the ChlD1 absorption. The subsequent electron transfer from ChlD1 within 14 ps was accompanied by a development of the radical anion band of PheoD1 at 445 nm, attributable to the formation of the secondary radical pair P680+PheoD1 . The key point of this model is that the most blue Q y transition of ChlD1 in RC is allowing an effective stabilization of separated charges. Although an alternative mechanism of charge separation with ChlD1* as a primary electron donor and PheoD1 as a primary acceptor can not be ruled out, it is less consistent with the kinetics and spectra of absorbance changes induced in the PSII RC preparation by femtosecond excitation at 700 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA :

Bacteriochlorophyll, primary electron acceptor in BRC

BRC:

Bacterial reaction center

D1/D2/Cytb559:

PSII RC

CD:

Circular dichroism

Chl:

Chlorophyll a

ChlD1 :

Chl located in D1 protein subunit

ET:

Electron transfer

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

Pheo:

Pheophytin a

PheoD1 :

Pheo located in D1 protein subunit

PSII:

Photosystem II

QA :

Primary plastoquinone electron acceptor

RC:

Reaction center

References

  • Barter LMC, Durrant CJR, Klug DR (2003) A quantitative structure-function relationship for photosystem II reaction center: supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100:946–951. doi:10.1073/pnas.0136891100

    Article  PubMed  CAS  Google Scholar 

  • Beens H, Weller A (1975) Excited molecular π-complexes in solution. In: Birks JB (ed) Organic molecular photophysics, vol 11. Wiley, London, pp 159–215

    Google Scholar 

  • Dekker JP, van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208. doi:10.1023/A:1006468024245

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580. doi:10.1146/annurev.arplant.53.100301.135238

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Laverge J, Vermaas WFJ, Chisholm DA (2001) Site-directed mutation at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of the primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281. doi:10.1021/bi010121r

    Article  PubMed  CAS  Google Scholar 

  • Doring G, Stiehl HH, Witt HT (1967) A second chlorophyll reaction in the electron chain of photosynthesis—registration by the repetitive excitation technique. Z Naturforsch B 22:639–644

    PubMed  CAS  Google Scholar 

  • Doring G, Renger G, Vater J, Witt HT (1969) Properties of the photoactive chlorophyll-a II in photosynthesis. Z Naturforsch B 24:1139–1143

    PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Frese RN, Germano M, de Weerd FL, van Stokkum IHM, Shkuropatov AY, Shuvalov VA, van Gorkom HJ, van Grondelle R, Dekker JP (2003) Electric field effects on the chlorophyll, pheophytins, and β-carotenes in the reaction center of photosystem II. Biochemistry 42:9205–9213. doi:10.1021/bi0273516

    Article  PubMed  CAS  Google Scholar 

  • Fujita I, Davis MS, Fajer Y (1978) Anion radicals of pheophytin and chlorophyll a: their role in the primary charge separations of plant photosynthesis. J Am Chem Soc 100:6280–6282. doi:10.1021/ja00487a079

    Article  CAS  Google Scholar 

  • Ganago IB, Klimov VV, Ganago AO, Shuvalov VA, Erokhin YE (1982) Linear dichroism and orientation of pheophytin, the intermediary electron acceptor in photosystem II reaction centers. FEBS Lett 140:127–130. doi:10.1016/0014-5793(82)80536-X

    Article  CAS  Google Scholar 

  • Germano M, Shkuropatov AY, Permentier H, de Wijn R, Hoff AJ, Shuvalov VA, van Gorkom HJ (2001) Pigment organization and their interactions in reaction centers of photosystem II: optical spectroscopy at 6 K of reaction centers with modified pheophytin composition. Biochemistry 40:11472–11482. doi:10.1021/bi010439j

    Article  PubMed  CAS  Google Scholar 

  • Germano M, Gradinaru CC, Shkuropatov AY, van Stokkum IHM, Shuvalov VA, Dekker JP, van Grondelle R, van Gorkom HJ (2004) Energy and electron transfer in photosystem II reaction centers with modified pheophytin composition. Biophys J 86:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Groot ML, Pawlowicz NP, van Wilderen LJGW, Breton J, van Stokkum IHM, van Grondelle R (2005) Initial electron donor and acceptor in isolated photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci USA 102:13087–13092. doi:10.1073/pnas.0503483102

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900. doi:10.1073/pnas.0505371103

    Article  PubMed  CAS  Google Scholar 

  • Hughes JL, Smith P, Pace R, Krausz E (2006) Charge separation in photosystem II core complexes induced by 690–730 excitation at 1.7 K. Biochim Biophys Acta 1757:841–851. doi:10.1016/j.bbabio.2006.05.035

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186. doi:10.1016/0014-5793(77)80580-2

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Shutilova NI, Krasnovsky AA (1980) The study of photoreduction of pheophytin and photooxidation of P680 in photosystem II preparations. Plant Physiol 27:315–326 (in Russian)

    CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Nowak FR, Kennis JTM, Franken EM, Shkuropatov AYa, Yakovlev AG, Gast P, Hoff AJ, Aartsma TJ, Shuvalov VA (1998) The energy level of P+B in plant pheophytin exchanged bacterial reaction centers probed by the temperature dependence of delayed fluorescence. In: Proceedings of the XI international congress on photosynthesis, Budapest, Hungary, Kluwer Academic Publishing, Dordrecht, pp 783–786

  • Nuijs AM, van Gorkom HJ, Plijter JJ, Duysens LNM (1986) Primary charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 848:167–175. doi:10.1016/0005-2728(86)90038-1

    Article  CAS  Google Scholar 

  • Okubo T, Tomo T, Sugiura M, Noguchi T (2007) Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of photosystem II as revealed by fourier transform infrared spectroscopy. Biochemistry 46:4390–4397. doi:10.1021/bi700157n

    Article  PubMed  CAS  Google Scholar 

  • Pawlowicz NP, Groot ML, van Stokkum IH, Breton J, van Grondelle R (2007) Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys J 93:2732–2742. doi:10.1529/biophysj.107.105452

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko V, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578. doi:10.1021/jp002323n

    Article  CAS  Google Scholar 

  • Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130:4431–4446. doi:10.1021/ja7099826

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J 88:986–998. doi:10.1529/biophysj.104.050294

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Diner BA, Schlodder E, Renger T (2008) Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. Biophys J 95:105–119. doi:10.1529/biophysj.107.123935

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Mullet JE, Crofts AR (1981) Measurements of the midpoint potential of the pheophytin acceptor of photosystem II. FEBS Lett 123:235–237. doi:10.1016/0014-5793(81)80295-5

    Article  CAS  Google Scholar 

  • Shkuropatov AY, Khatypov RA, Shkuropatova VA, Zvereva MG, Owens TG, Shuvalov VA (1999) Reaction centers of photosystem II with a chemically-modified pigment composition: exchange of pheophytins with 131-deoxo-131-hydroxy-pheophytin a. FEBS Lett 450:163–167. doi:10.1016/S0014-5793(99)00486-X

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Klimov VV (1976) The primary photoreactions in the complex cytochrome-P-890 · P-760 bacteriopheophytin760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440:587–599. doi:10.1016/0005-2728(76)90044-X

    Article  CAS  Google Scholar 

  • Shuvalov VA, Yakovlev AG (1998) Energy level of P+B relative to P*, found by measurements of recombination fluorescence in plant-pheophytin-modified reaction centers from Rhodobacter sphaeroides R-26. Membr Cell Biol 12:563–569 (in Russian)

    PubMed  CAS  Google Scholar 

  • Shuvalov VA, Heber U, Schreiber U (1989) Low temperature photochemistry and spectral properties of a photosystem II reaction center complex D1/D2/containing the proteins D1 and D2 and two hemes of Cyt b-559. FEBS Lett 258:27–31. doi:10.1016/0014-5793(89)81607-2

    Article  CAS  Google Scholar 

  • Terenin AN (1967) Photonics of dye molecules. Nauka, Moscow

    Google Scholar 

  • Tetenkin VL, Gulyaev BA, Seibert M, Rubin AB (1989) Spectral properties of stabilized D1/D2/cytochrome b-559 photosystem II reaction center complex Effects of Triton X-100, the redox state of pheophytin, and β-carotene. FEBS Lett 250:459–463. doi:10.1016/0014-5793(89)80776-8

    Article  CAS  Google Scholar 

  • Ushakov EN, Nadtochenko VA, Gromov SP, Vedernikov AI, Lobova NA, Alfimov MV, Gostev FE, Petrukhin AN, Sarkisov OM (2004) Ultrafast excited state dynamics of the bi- and termolecular stilbene-viologen charge transfer complexes assembled via host–guest interactions. Chem Phys 298:251–261. doi:10.1016/j.chemphys.2003.12.002

    Article  CAS  Google Scholar 

  • Van Brederode ME, Jones MR, van Mourik F, van Stokkum IHM, van Grondelle R (1997) A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36:6855–6861. doi:10.1021/bi9703756

    Article  PubMed  Google Scholar 

  • Van Brederode ME, van Mourik F, van Stokkum IHM, Jones MR, van Grondelle R (1999) Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 96:2054–2059. doi:10.1073/pnas.96.5.2054

    Article  PubMed  Google Scholar 

  • Van Leeuwen PJ, Nieveen MC, Van de Meent EJ, Dekker JP, Van Gorkom HJ (1991) Rapid and simple isolation of pure photosystem II core and reaction center particles from spinach. Photosynth Res 28:149–153. doi:10.1007/BF00054128

    Article  Google Scholar 

  • Vulto SIE, Streltsov AM, AYa Shkuropatov, Shuvalov VA, Aartsma TJ (1997) Subpicosecond excited-state relaxation of the accessory bacteriochlorophylls in native and modified reaction centers of Rhodobacter sphaeroides R26. J Phys Chem 101:7249–7255

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. VV Klimov for preparations of PSII RC and for discussion, and MM Leonova for assistance in manuscript preparation. This work was supported by MCB and “Femtosecond optics and new optical materials”grants from the Russian Academy of Sciences, by the State contract 02.512.11.2085, by the President of RF grant SS-4525.2008.4 and by RFFI grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shuvalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelaev, I.V., Gostev, F.E., Nadtochenko, V.A. et al. Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: II. Femto- and picosecond charge separation in PSII D1/D2/Cyt b559 complex. Photosynth Res 98, 95–103 (2008). https://doi.org/10.1007/s11120-008-9371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9371-5

Keywords

Navigation