Skip to main content
Log in

Canopy height and biomass prediction in Mombaça guinea grass pastures using satellite imagery and machine learning

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Remote sensing can serve as a promising solution for monitoring spatio-temporal variability in grasslands, providing timely information about different biophysical parameters. We aimed to develop models for canopy height classification and aboveground biomass estimation in pastures of Megathyrsus maximus cv. Mombaça using machine learning techniques and images obtained from the Sentinel-2 satellite. We used different spectral bands from the Sentinel-2, which were obtained and processed entirely in the cloud computing space. Three canopy height classes were defined according to grazing management recommendations: Class 0 (< 0.45 m), Class 1 (0.45–0.80 m) and Class 2 (> 0.80 m). For modeling, the original database was divided into training data (85%) and test data (15%). To avoid dependency between our training and test datasets and ensure greater generalization capacity, we used a spatial grouping evaluation structure. The random forest algorithm was used to predict canopy height and aboveground biomass by using height and biomass field reference data obtained from 54 paddocks in Brazil between 2016 and 2018. Our results demonstrated precision, recall, and accuracy values of up to 73%, 73%, and 72%, respectively, for canopy height classification. In addition, the models showed reasonable predictive performance for aboveground fresh biomass (AFB) and dry matter concentration (DMC; R2 = 0.61 and 0.69, respectively). We conclude that the combined use of satellite imagery and machine learning techniques has potential to predict canopy height and aboveground biomass of Megathyrsus maximus cv. Mombaça. However, further studies should be conducted to improve the proposed models and develop software to implement the tool under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Ali, I., Barrett, B., Cawkwell, F., Green, S., Dwyer, E., & Neumann, M. (2017). Application of repeat-pass TerraSAR-X staring spotlight interferometric coherence to monitor pasture biophysical parameters: Limitations and sensitivity analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(7), 3225–3231. https://doi.org/10.1109/JSTARS.2017.2679761

    Article  Google Scholar 

  • Alvarenga, C. A. F., Euclides, V. P. B., Montagner, D. B., Sbrissia, A. F., Barbosa, R. A., & De Araújo, A. R. (2020). Animal performance and sward characteristics of Mombaça guineagrass pastures subjected to two grazing frequencies. Tropical Grasslands-Forrajes Tropicales, 8(1), 1–10. https://doi.org/10.17138/tgft(8)1-10

    Article  Google Scholar 

  • Alvarez-Mendoza, C. I., Guzman, D., Casas, J., Bastidas, M., Polanco, J., Valencia-Ortiz, M., Montenegro, F., Arango, J., Ishitani, M., & Selvaraj, M. G. (2022). Predictive modeling of above-ground biomass in brachiaria pastures from satellite and UAV imagery using machine learning approaches. Remote Sensing, 14(22), 5870. https://doi.org/10.3390/rs14225870

    Article  Google Scholar 

  • Barrett, B., Nitze, I., Green, S., & Cawkwell, F. (2014). Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sensing of Environment, 152, 109–124. https://doi.org/10.1016/j.rse.2014.05.018

    Article  Google Scholar 

  • Batistoti, J., Marcato Junior, J., Ítavo, L., Matsubara, E., Gomes, E., Oliveira, B., Souza, M., Siqueira, H., Salgado Filho, G., Akiyama, T., Gonçalves, W., Liesenberg, V., Li, J., & Dias, A. (2019). Estimating pasture biomass and canopy height in Brazilian Savanna using UAV photogrammetry. Remote Sensing, 11(20), 2447. https://doi.org/10.3390/rs11202447

    Article  Google Scholar 

  • Borra-Serrano, I., De Swaef, T., Muylle, H., Nuyttens, D., Vangeyte, J., Mertens, K., Saeys, W., Somers, B., Roldán-Ruiz, I., & Lootens, P. (2019). Canopy height measurements and non-destructive biomass estimation of Lolium perenne swards using UAV imagery. Grass and Forage Science. https://doi.org/10.1111/gfs.12439

    Article  Google Scholar 

  • Bretas, I. L., Valente, D. S. M., Silva, F. F., Chizzotti, M. L., Paulino, M. F., D’Áurea, A. P., Paciullo, D. S. C., Pedreira, B. C., & Chizzotti, F. H. M. (2021). Prediction of aboveground biomass and dry-matter content in Brachiaria pastures by combining meteorological data and satellite imagery. Grass and Forage Science, 76(3), 340–352. https://doi.org/10.1111/gfs.12517

    Article  Google Scholar 

  • Carnevalli, R., Silva, S. C., Bueno, A. A. O., Uebele, M. C., Bueno, F. O., Hodgson, J., Silva, G. N., & Morais, J. P. G. (2006). Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing managements. Tropical Grasslands, 40, 165–176.

  • Castro, W., Marcato Junior, J., Polidoro, C., Osco, L. P., Gonçalves, W., Rodrigues, L., Santos, M., Jank, L., Barrios, S., Valle, C., Simeão, R., Carromeu, C., Silveira, E., de Jorge, L. A. C., & Matsubara, E. (2020). Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery. Sensors, 20(17), 4802. https://doi.org/10.3390/s20174802

    Article  PubMed  PubMed Central  Google Scholar 

  • Catchpole, W. R., & Wheeler, C. J. (1992). Estimating plant biomass: A review of techniques. Austral Ecology, 17(2), 121–131. https://doi.org/10.1111/j.1442-9993.1992.tb00790.x

    Article  Google Scholar 

  • Chen, Y., Guerschman, J., Shendryk, Y., Henry, D., & Harrison, M. T. (2021). Estimating pasture biomass using sentinel-2 imagery and machine learning. Remote Sensing, 13(4), 603. https://doi.org/10.3390/rs13040603

    Article  Google Scholar 

  • Cimbelli, A., & Vitale, V. (2017). Grassland height assessment by satellite images. Advances in Remote Sensing, 06(01), 40–53. https://doi.org/10.4236/ars.2017.61003

    Article  Google Scholar 

  • Cisneros, A., Fiorio, P., Menezes, P., Pasqualotto, N., Van Wittenberghe, S., Bayma, G., & Furlan Nogueira, S. (2020). Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. Agronomy, 10(5), 711. https://doi.org/10.3390/agronomy10050711

    Article  CAS  Google Scholar 

  • Cooper, S., Roy, D., Schaaf, C., & Paynter, I. (2017). Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sensing, 9(6), 531. https://doi.org/10.3390/rs9060531

    Article  Google Scholar 

  • DiMaggio, A. M., Perotto-Baldivieso, H. L., Ortegas, J. A., Walther, C., Labrador-Rodriguez, K. N., Page, M. T., de la Martinez, J. L., Rideout-Hanzak, S., Hedquist, B. C., & Wester, D. B. (2020). A pilot study to estimate forage mass from unmanned aerial vehicles in a semi-arid rangeland. Remote Sensing, 12(15), 2431. https://doi.org/10.3390/rs12152431

    Article  Google Scholar 

  • Euclides, V. P. B., da Lopes, F., do NascimentoJunior, D., da CarneiroSilva, S., Difantedos, S. G., & Barbosa, R. A. (2016). Steer performance on Panicum maximum (cv. Mombaça) pastures under two grazing intensities. Animal Production Science, 56(11), 1849. https://doi.org/10.1071/AN14721

    Article  Google Scholar 

  • FAO (2009). How to feed the world in 2050. High-level experts forum. Rome: FAO. Available online at: https://www.jstor.org/stable/25593700

  • Fernandes, F. D., Ramos, A. K. B., Jank, L., Carvalho, M. A., Martha, G. B., Jr., & Braga, G. J. (2014). Forage yield and nutritive value of Panicum maximum genotypes in the Brazilian savannah. Scientia Agricola, 71(1), 23–29. https://doi.org/10.1590/S0103-90162014000100003

    Article  Google Scholar 

  • Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

    Article  Google Scholar 

  • Guerini Filho, M., Kuplich, T. M., & Quadros, F. L. F. D. (2020). Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 41(8), 2861–2876. https://doi.org/10.1080/01431161.2019.1697004

    Article  Google Scholar 

  • Hodgson, J. (1990). Grazing management: Science into practice. Longman Group UK Ltd.

  • Instituto Brasileiro de Geografia e Estatística (IBGE). (2017). Censo Agropecuário (Agricultural census). Available online at: https://biblioteca.ibge.gov.br/

  • Imran, H. A., Gianelle, D., Rocchini, D., Dalponte, M., Martín, M. P., Sakowska, K., Wohlfahrt, G., & Vescovo, L. (2020). VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and canopy structural traits in heterogeneous grasslands. Remote Sensing, 12(14), 2254. https://doi.org/10.3390/rs12142254

    Article  Google Scholar 

  • Koppen, W. (1936). Das geographische system der klimate. In Handbuch Der Klimatologie.

  • Lessire, F., Jacquet, S., Veselko, D., Piraux, E., & Dufrasne, I. (2019). Evolution of grazing practices in Belgian dairy farms: Results of two surveys. Sustainability. https://doi.org/10.3390/su11153997

    Article  Google Scholar 

  • Morota, G., Ventura, R. V., Silva, F. F., Koyama, M., & Fernando, S. C. (2018). Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture1. Journal of Animal Science, 96(4), 1540–1550. https://doi.org/10.1093/jas/sky014

    Article  PubMed  PubMed Central  Google Scholar 

  • Mundava, C., Helmholz, P., Schut, A. G. T., Corner, R., McAtee, B., & Lamb, D. W. (2014). Evaluation of vegetation indices for rangeland biomass estimation in the Kimberley area of Western Australia. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II–7, 47–53.

    Article  Google Scholar 

  • Murphy, D. J., Murphy, M. D., O’Brien, B., & O’Donovan, M. (2021). A review of precision technologies for optimising pasture measurement on irish grassland. Agriculture, 11(7), 600. https://doi.org/10.3390/agriculture11070600

    Article  Google Scholar 

  • Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012

    Article  Google Scholar 

  • Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research. https://doi.org/10.1016/j.sbsr.2020.100367

    Article  Google Scholar 

  • Nickmilder, C., Tedde, A., Dufrasne, I., Lessire, F., Tychon, B., Curnel, Y., Bindelle, J., & Soyeurt, H. (2021). Development of machine learning models to predict compressed sward height in walloon pastures based on sentinel-1, sentinel-2 and meteorological data using multiple data transformations. Remote Sensing, 13(3), 408. https://doi.org/10.3390/rs13030408

    Article  Google Scholar 

  • Obanawa, H., Yoshitoshi, R., Watanabe, N., & Sakanoue, S. (2020). Portable LiDAR-based method for improvement of grass height measurement accuracy: Comparison with SfM methods. Sensors, 20(17), 4809. https://doi.org/10.3390/s20174809

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Mara, F. P. (2012). The role of grasslands in food security and climate change. Annals of Botany, 110(6), 1263–1270. https://doi.org/10.1093/aob/mcs209

    Article  PubMed  PubMed Central  Google Scholar 

  • Opio, C., Gerber, P., & Steinfeld, H. (2011). Livestock and the environment: Addressing the consequences of livestock sector growth. Advances in Animal Biosciences, 2(3), 601–607. https://doi.org/10.1017/S204047001100286X

    Article  Google Scholar 

  • Otgonbayar, M., Atzberger, C., Chambers, J., & Damdinsuren, A. (2019). Mapping pasture biomass in Mongolia using partial least squares, random forest regression and landsat 8 imagery. International Journal of Remote Sensing, 40(8), 3204–3226. https://doi.org/10.1080/01431161.2018.1541110

    Article  Google Scholar 

  • Pereira, M., De Almeida, R. G., Macedo, M. C. M., Dos Santos, V. A. C., Gamarra, E. L., Castro-Montoya, J., Lempp, B., & Morais, M. D. G. (2021). Anatomical and nutritional characteristics of Megathyrsus maximus genotypes under a silvopastoral system. Tropical Grasslands-Forrajes Tropicales, 9(2), 159–170. https://doi.org/10.17138/tgft(9)159-170

    Article  Google Scholar 

  • Pezzopane, J. R. M., de Bernardi, A. C., Bosi, C., Crippa, P. H., Santos, P. M., & Nardachione, E. C. (2019). Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. European Journal of Agronomy, 103, 130–139. https://doi.org/10.1016/j.eja.2018.12.005

    Article  Google Scholar 

  • Punalekar, S. M., Verhoef, A., Quaife, T. L., Humphries, D., Bermingham, L., & Reynolds, C. K. (2018). Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sensing of Environment, 218, 207–220. https://doi.org/10.1016/j.rse.2018.09.028

    Article  Google Scholar 

  • Rangwala, M., Liu, J., Ahluwalia, K. S., Ghajar, S., Dhami, H. S., Tracy, B. F., Tokekar, P., & Williams, R. K. (2021). DeepPaSTL: Spatio-temporal deep learning methods for predicting long-term pasture terrains using synthetic datasets. Agronomy, 11(11), 2245. https://doi.org/10.3390/agronomy11112245

    Article  Google Scholar 

  • Reinermann, S., Asam, S., & Kuenzer, C. (2020). Remote sensing of grassland production and management—a review. Remote Sensing, 12(12), 1949. https://doi.org/10.3390/rs12121949

    Article  Google Scholar 

  • Richter, K., Atzberger, C., Hank, T. B., & Mauser, W. (2012). Derivation of biophysical variables from earth observation data: Validation and statistical measures. Journal of Applied Remote Sensing, 6(1), 063557–063561. https://doi.org/10.1117/1.JRS.6.063557

    Article  Google Scholar 

  • Schons, R. M. T., Laca, E. A., Savian, J. V., Mezzalira, J. C., Schneider, E. A. N., Caetano, L. A. M., Zubieta, A. S., Benvenutti, M. A., & de Carvalho, P. C. F. (2021). ‘Rotatinuous’ stocking: An innovation in grazing management to foster both herbage and animal production. Livestock Science, 245, 104406. https://doi.org/10.1016/j.livsci.2021.104406

    Article  Google Scholar 

  • da Silva, S., Sbrissia, A., & Pereira, L. (2015). Ecophysiology of C4 forage grasses—understanding plant growth for optimising their use and management. Agriculture, 5(3), 598–625. https://doi.org/10.3390/agriculture5030598

    Article  Google Scholar 

  • Da Silva, S. C., Bueno, A. A. O., Carnevalli, R. A., Silva, G. P., & Chiavegato, M. B. (2019). Nutritive value and morphological characteristics of Mombaça grass managed with different rotational grazing strategies. The Journal of Agricultural Science, 157(7–8), 592–598. https://doi.org/10.1017/S0021859620000052

    Article  CAS  Google Scholar 

  • Théau, J., Lauzier-Hudon, É., Aubé, L., & Devillers, N. (2021). Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PLOS ONE, 16(1), e0245784. https://doi.org/10.1371/journal.pone.0245784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiscornia, G., Baethgen, W., Ruggia, A., Do Carmo, M., & Ceccato, P. (2019). Can we monitor height of native grasslands in uruguay with earth observation? Remote Sensing, 11(15), 1801. https://doi.org/10.3390/rs11151801

    Article  Google Scholar 

  • Tong, X., Duan, L., Liu, T., & Singh, V. P. (2019). Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at peak productive period for harvest decision. Precision Agriculture, 20(3), 477–495. https://doi.org/10.1007/s11119-018-9592-3

    Article  Google Scholar 

  • Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.10.018

    Article  PubMed  Google Scholar 

  • Vázquez-Arellano, M., Griepentrog, H., Reiser, D., & Paraforos, D. (2016). Correction: Vázquez-Arellano, M., et al. 3-D imaging systems for agricultural applications—a review. Sensors, 16(7), 1039. https://doi.org/10.3390/s16071039

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R. B., & Chang, Q. (2019). Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 189–201. https://doi.org/10.1016/j.isprsjprs.2019.06.007

    Article  Google Scholar 

  • Wang, Y., Wu, G., Deng, L., Tang, Z., Wang, K., Sun, W., & Shangguan, Z. (2017). Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm. Scientific Reports, 7(1), 6940. https://doi.org/10.1038/s41598-017-07197-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—a review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

    Article  Google Scholar 

  • Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., Du, J., Yi, S., & Wang, Y. (2018). Estimation of grassland canopy height and aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote Sensing, 10(6), 851. https://doi.org/10.3390/rs10060851

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, APQ-02670-21), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Instituto Nacional de Ciência e Tecnologia—Ciência Animal (INCT—CA) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful to the Embrapa Gado de Corte for the field dataset provided.

Author information

Authors and Affiliations

Authors

Contributions

ILB: conceptualization; data curation; investigation; methodology; software; validation; visualization; writing-original draft. DSMV: conceptualization; formal analysis; methodology; software; validation; writing-review & editing. TFdO: methodology; software; validation; writing-review & editing. DBM: data curation; investigation; writing-review & editing. VPBE: data curation; investigation; writing-review & editing. FHMC: conceptualization; data curation; methodology; project administration; resources; supervision; visualization; writing review & editing.

Corresponding author

Correspondence to Fernanda Helena Martins Chizzotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 322 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bretas, I.L., Valente, D.S.M., de Oliveira, T.F. et al. Canopy height and biomass prediction in Mombaça guinea grass pastures using satellite imagery and machine learning. Precision Agric 24, 1638–1662 (2023). https://doi.org/10.1007/s11119-023-10013-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10013-z

Keywords

Navigation