Skip to main content
Log in

Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Olive orchard is one of the main crops in the Mediterranean basin and, particularly, in Spain, with 56% of European production. In semi-arid regions, nitrogen (N) is the main limiting factor of olive trees after water and its quantification is essential to carry out accurate fertilization planning. In the present study, N status of an olive orchard located in Carmonita (southwest Spain) was analysed using hyperspectral data. Reflectance data were recorded with a high precision spectro-radiometer through the full spectrum (350–2500 nm). Different vegetation indices (VI), combining two or three wavelengths, and partial least squares regression (PLSR) models were developed, and the prediction capabilities were compared. Different pre-processing (smoothing, SM; standard normal variate, SNV; first and second derivative) were applied to analyse the influence of the noise generated by the spectro-radiometer measurements when computing the determination coefficient between leaf N content (LNC) and spectra data. Results showed that second derivative combined with SNV pre-processing produced the best determination coefficients. The wavelengths most sensitive to N variation used to perform VI were selected from the visible and the short-wave infrared spectrum regions, which relate to chlorophyll a + b and N absorption features. DCNI and TCARI showed the best fittings for the LNC prediction (R2 = 0.72, R2cv = 0.71; and R2 = 0.64, R2cv = 0.63, respectively). PLSR models yielded higher accuracy than the models based on VI (R2 = 0.98, R2cv = 0.56), although the large difference between calibration and cross-validation showed more uncertainty in the PLSR models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akdemir, B., Saglam, C., Belliturk, K., Makaraci, A., Urusan, A., & Atar, E. (2018). Effect of spatial variability on fertiliser requirement of olive orchard cultivated for oil production. Journal of Environmental Protection and Ecology, 19(1), 319–329.

    CAS  Google Scholar 

  • Alchanatis, V., Cohen, Y., Levi, A., Ostrovsky, V., Schmilovitch, Z., Dag, A., et al. (2009). Estimating olive leaf mineral content using spectral reflectance. In U. Yermiyahu, A. Dag, & A. Ben-Gal (Eds.), International symposium for olive irrigation and oil quality (p. O23). Leuven, Belgium: International Society for Horticultural Science.

    Google Scholar 

  • Atzberger, C., Guérif, M., Baret, F., & Werner, W. (2010). Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73(2), 165–173.

    Article  Google Scholar 

  • Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777.

    Article  CAS  Google Scholar 

  • Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1993). Correction to the description of standard normal variate (SNV) and de-trend (DT) transformations in practical spectroscopy with applications in food and beverage analysis—2nd edition. Journal of Near Infrared Spectroscopy, 1(3), 185–186.

    Article  CAS  Google Scholar 

  • Barranco, D., Fernández-Escobar, R., & Rallo, L. (1997). El cultivo del olivo (Olive cultivation) (1stª ed.). Madrid, Spain: Mundi-Prensa Libros.

    Google Scholar 

  • Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J., et al. (2016). A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Analytica Chimica Acta, 909, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Camino, C., González-Dugo, V., Hernández, P., Sillero, J., & Zarco-Tejada, P. J. (2018). Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 70, 105–117.

    Article  Google Scholar 

  • CAMO. (2011). CAMO Software: Unscrambler. Retrieved May 15, 2020, from https://www.camo.com.

  • Ceccato, P., Gobron, N., Flasse, S., Pinty, B., & Tarantola, S. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sensing of Environment, 82(2–3), 188–197.

    Article  Google Scholar 

  • Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P., & Li, B. (2010). New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment, 114(9), 1987–1997.

    Article  Google Scholar 

  • Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., et al. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565.

    Article  Google Scholar 

  • Clevers, J. G., Kooistra, L., & van den Brande, M. M. (2017). Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 9(5), 405.

    Article  Google Scholar 

  • Cohen, Y., & Alchanatis, V. (2018). Spectral and spatial methods for hyperspectral and thermal image-analysis to estimate biophysical and biochemical properties of agricultural crops. In P. S. Thenkabail, G. J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation: biophysical and biochemical characterization and plant species studies (pp. 73–102). Boca Raton, FL, USA: CRC Press, Taylor and Francis Group.

    Chapter  Google Scholar 

  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278.

    Article  Google Scholar 

  • Curran, P. J., Dungan, J. L., & Peterson, D. L. (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3), 349–359.

    Article  Google Scholar 

  • Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • EUROSTAT, European Statistical System. (2017). Agriculture data. Retrieved May 15, 2020, from, https://ec.europa.eu/eurostat/data/database.

  • FAOSTAT, Food and Agriculture Organization of the United Nations. (2017). Food and agriculture data. Retrieved May 15, 2020, from http://www.fao.org/faostat/en/#data.

  • Fernández-Escobar, R., Marin, L., Sánchez-Zamora, M., García-Novelo, J., Molina-Soria, C., & Parra, M. (2009). Long-term effects of N fertilization on cropping and growth of olive trees and on N accumulation in soil profile. European Journal of Agronomy, 31(4), 223–232.

    Article  CAS  Google Scholar 

  • Fernández-Escobar, R., Moreno, R., & García-Creus, M. (1999). Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Scientia Horticulturae, 82(1–2), 25–45.

    Article  Google Scholar 

  • Ferwerda, J. G. (2005). Charting the quality of forage: measuring and mapping the variation of chemical components in foliage with hyperspectral remote sensing. Wageningen University, Netherlands, PhD Thesis.

  • Ferwerda, J. G., & Skidmore, A. K. (2007). Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS Journal of Photogrammetry and Remote Sensing, 62(6), 406–414.

    Article  Google Scholar 

  • Gómez-Casero, M. T., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., García-Torres, L., & Fernández-Escobar, R. (2007). Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. Journal of the American Society for Horticultural Science, 132(5), 611–618.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553.

    Article  Google Scholar 

  • Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., & Alchanatis, V. (2010). SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing, 31(19), 5127–5143.

    Article  Google Scholar 

  • Hruschka, W. R. (1987). Data analysis: Wavelength selection methods. In P. C. Williams & K. H. Norris (Eds.), Near infrared technology in agricultural and food industries (pp. 35–55). St. Paul, MN, USA: American Association of Cereal Chemists Inc.

    Google Scholar 

  • Im, J., & Jensen, J. R. (2008). Hyperspectral remote sensing of vegetation. Geography Compass, 2(6), 1943–1961.

    Article  Google Scholar 

  • Li, F., Mistele, B., Hu, Y., Chen, X., & Schmidhalter, U. (2014). Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. European Journal of Agronomy, 52, 198–209.

    Article  CAS  Google Scholar 

  • Liang, S. (2005). Quantitative remote sensing of land surfaces (Vol. 30). New York, USA: Wiley.

    Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Alamo, S., & García-Torres, L. (2004). Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21(2), 209–222.

    Article  CAS  Google Scholar 

  • Miphokasap, P., & Wannasiri, W. (2018). Estimations of nitrogen concentration in sugarcane using hyperspectral imagery. Sustainability, 10(4), 1266.

    Article  CAS  Google Scholar 

  • Moros, J., Garrigues, S., & de la Guardia, M. (2010). Vibrational spectroscopy provides a green tool for multi-component analysis. Trends in Analytical Chemistry, 29(7), 578–591.

    Article  CAS  Google Scholar 

  • Muik, B., Lendl, B., Molina-Díaz, A., Pérez-Villarejo, L., & Ayora-Cañada, M. J. (2004). Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Analytical and Bioanalytical Chemistry, 379(1), 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Ninyerola, M., Roure, J. M., & Pons, X. (2005). Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica (Digital climate Atlas of the Iberian Peninsula: methodology and applications in bioclimatology and geobotany). Barcelona, Spain: Universidad Autónoma de Barcelona.

    Google Scholar 

  • Osborne, B. G. (2006). Near-infrared spectroscopy in food analysis. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry: applications, theory and instrumentation, 5 (pp. 1–14). Chichester, UK: Wiley.

    Google Scholar 

  • Pimstein, A., Eitel, J. U., Long, D. S., Mufradi, I., Karnieli, A., & Bonfil, D. J. (2009). A spectral index to monitor the head-emergence of wheat in semi-arid conditions. Field Crops Research, 111(3), 218–225.

    Article  Google Scholar 

  • Pimstein, A., Karnieli, A., Bansal, S. K., & Bonfil, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field crops research, 121(1), 125–135.

    Article  Google Scholar 

  • Puckett, L. J., Tesoriero, A. J., & Dubrovsky, N. M. (2011). Nitrogen contamination of surficial aquifers: A growing legacy. Environmental Science & Technology, 45(3), 839–844.

    Article  CAS  Google Scholar 

  • Quemada, M., Gabriel, J. L., & Zarco-Tejada, P. (2014). Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sensing, 6(4), 2940–2962.

    Article  Google Scholar 

  • R Development Core Team. (2008). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved May 15, 2020, from, https://www.r-project.org

  • Rotbart, N., Schmilovitch, Z., Cohen, Y., Alchanatis, V., Erel, R., Ignat, T., et al. (2013). Estimating olive leaf nitrogen concentration using visible and near-infrared spectral reflectance. Biosystems Engineering, 114(4), 426–434.

    Article  Google Scholar 

  • Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639.

    Article  CAS  Google Scholar 

  • Schulze, E. D., De Vries, W., Hauhs, M., Rosen, K., Rasmussen, L., Tamm, C.-O., et al. (1989). Critical loads for nitrogen deposition on forest ecosystems. Water, Air, and Soil Pollution, 48(3–4), 451–456.

    Article  CAS  Google Scholar 

  • Serrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 81(2), 355–364.

    Article  Google Scholar 

  • Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.

    Article  CAS  Google Scholar 

  • Singh, S. K., Houx, J. H., III, Maw, M. J., & Fritschi, F. B. (2017). Assessment of growth, leaf N concentration and chlorophyll content of sweet sorghum using canopy reflectance. Field Crops Research, 209, 47–57.

    Article  Google Scholar 

  • Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah (Ed.), Multivariate ansalysis (pp. 391–420). New York, USA: Academic Press.

    Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.

    Article  CAS  Google Scholar 

  • Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491–1507.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the GeoAmbiental Research Group of the University of Extremadura (Spain) for providing the spectro-radiometer used in the spectral data collection. In addition, the authors would like to thank the three anonymous referees for helping to improve both the readability and the content of this paper.

Funding

This research has been financially supported by Junta de Extremadura, Spain (projects GR18090 and GR18108), European Union (European Regional Development Funds), and NotAnts S.L.U. through the project AA-16-0091-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Rubio-Delgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Delgado, J., Pérez, C.J. & Vega-Rodríguez, M.A. Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. Precision Agric 22, 1–21 (2021). https://doi.org/10.1007/s11119-020-09727-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09727-1

Keywords

Navigation