Skip to main content
Log in

Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Crop monitoring through remote sensing techniques enable greater knowledge of average variability in crop growth. Canopy sensors help provide information on the variability of crop through the use of vegetation indices. The objective of this work was to compare the potential and performance of three vegetation indices used for monitoring soybean variability with canopy sensors was compared. The optimal time for sensor readings was determined during the soybean crop development stages. Also, the quality of the readings between vegetation indices [the normalized difference vegetation index (NDVI), normalized difference red-edge (NDRE), and inverse ratio (IRVI)] was compared through control charts and the saturation detection index. The experimental design was based on statistical quality control and comprised 65 sampling points within a 30 × 30 m grid. At 30, 45, 60, 75, and 90 days after sowing (DAS), the parameters used as quality indicators, such as fresh and dry biomass, canopy width, chlorophyll index, plant height, yield, and the vegetation indices were assessed using canopy sensors. The optimal time for canopy sensor readings, based mainly on the NDRE, was at 45 and 60 DAS. The lower variability exhibited by NDRE led to higher process quality when compared with those for NDVI and IRVI. The control charts proved to be promising in identifying the moment when saturation occurs for the indices more susceptible to saturation, such as the NDVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: DAVIS meteorological station of the Instrumentation, Automation and Processing Laboratory in the Department of Rural Engineering, Unesp/Fcav, Jaboticabal, State of São Paulo, Brazil

Fig. 3

Sources: Ciampitti et al. (2014), K-State Research and Extension, adapted from Carneiro (2018)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel-Rahman, E. M., & Ahmed, F. B. (2008). The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. International Journal of Remote Sensing, 29(13), 3753–3767. https://doi.org/10.1080/01431160701874603.

    Article  Google Scholar 

  • Ag Leader Technology. (2011). Precision point blog. Retrieved September 13, 2017, from http://www.agleader.com/blog/optrx-crop-sensors-a-tech-support-perspective/.

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Amaral, L. R., Molin, J. P., Portz, G., Finazzi, F. B., & Cortinove, L. (2015). Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture, 16(1), 15–28. https://doi.org/10.1007/s11119-014-9377-2.

    Article  Google Scholar 

  • Amaral, L. R., Trevisan, R. G., & Molin, J. P. (2018). Canopy sensor placement for variable-rate nitrogen application in sugarcane fields. Precision Agriculture, 19(1), 147–160. https://doi.org/10.1007/s11119-017-9505-x.

    Article  Google Scholar 

  • Barbetta, P. (2006). Estatística aplicada as ciências sociais. Florianópolis: Editora UFSC.

    Google Scholar 

  • Barbetta, P. A., Reis, M. M., & Bornia, A. C. (2004). Estatística para cursos de engenharia e informática (2nd ed., p. 410). São Paulo, SP: Atlas.

    Google Scholar 

  • Bernardes, M. S. (1987). Fotossíntese no dossel das plantas cultivadas. In P. R. Castro (Ed.), Ecologia da produção agrícola (p. 249). Piracicaba, SP: Associação Brasileira para Pesquisa da Potassa e do Fosfato.

    Google Scholar 

  • Bertolin, D. C., de Sá, M. E., Arf, O., Furlani Junior, E., de Colombo, A. S., & de Carvalho, F. L. B. M. (2010). Aumento da produtividade de soja com a aplicação de bioestimulantes. Bragantia, 69(2), 339–347.

    Article  CAS  Google Scholar 

  • Bolfe, E. L., Batistella, M., & Ferreira, M. C. (2012). Correlação de variáveis espectrais e estoque de carbono da biomassa aérea de sistemas agroflorestais. Pesquisa Agropecuária Brasileira, 47(9), 1261–1269.

    Article  Google Scholar 

  • Bunchaft, G., & de Kellner, S. R. O. (2002). Estatística sem mistérios (4th ed., Vol. 2, p. 303). Petrópolis, RJ: Vozes.

    Google Scholar 

  • Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14, 711–722. https://doi.org/10.1080/01431169308904370.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67. https://doi.org/10.1016/j.compag.2014.08.012.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Feng, G., Gao, X., Liu, B., Liu, Y., et al. (2017). Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Research, 214, 365–372. https://doi.org/10.1016/j.fcr.2017.09.033.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., et al. (2016). Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture, 17(2), 136–154. https://doi.org/10.1007/s11119-015-9412-y.

    Article  Google Scholar 

  • Carneiro, F. M. (2018). Sensores de dossel no monitoramento da variabilidade temporal das culturas da soja e do amendoim. 122 f. Tese (Doutorado) - Curso de Agronomia (Produção Vegetal), Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Jaboticabal. Disponível em: https://repositorio.unesp.br/handle/11449/155945. Accessed 6 Dec 2019.

  • Carneiro, F. M., Zerbato, C., Menezes, P. C., Girio, L. A. S., Oliveira, M. F., & Furlani, C. E. A. (2017). Sensoriamento Terrestre. Revista Cultivar Máquinas, 15, 20–21.

    Google Scholar 

  • Chioderoli, C. A., da Silva, R. P., de Noronha, R. H. F., Cassia, M. T., & dos Santos, E. P. (2012). Perdas de grãos e distribuição de palha na colheita mecanizada de soja. Bragantia, 71(1), 112–121. https://doi.org/10.1590/s0006-87052012005000003.

    Article  Google Scholar 

  • Ciampitti, I.; Shoup, D.; & Duncan, S. (2014). Late planting of soybeans: Management considerations. Retrieved May 31, 2018, from https://webapp.agron.ksu.edu/agr_social/eu_article.throck?article_id=1429.

  • Cruz, C. D., & Carneiro, P. C. S. (2003). Modelos biométricos aplicados ao melhoramento genético (p. 585). Viçosa, MG: UFV.

    Google Scholar 

  • Cruz, C. D., & Regazzi, A. J. (1997). Modelos biométricos aplicados ao melhoramento genético (2nd ed., p. 390). Viçosa, MG: UFV.

    Google Scholar 

  • Dancey, C., & Reidy, J. (2006). Estatística Sem Matemática para Psicologia: Usando SPSS para Windows (3rd ed., p. 608). Artmed: Porto Alegre.

    Google Scholar 

  • Novo, E. M. L. M. (2008). Sensoriamento Remoto: Princípios e aplicações (p. 363). São Paulo: Ed. Blucher.

    Google Scholar 

  • do Amaral, L. R., & Molin, J. P. (2014). The effectiveness of three vegetation indices obtained from a canopy sensor in identifying sugarcane response to nitrogen. Agronomy Journal, 106(1), 273–280.

    Article  Google Scholar 

  • dos Santos, A. F., da Silva, R. P., Zerbato, C., de Menezes, P. C., Kazama, E. H., Paixão, C. S., et al. (2018). Use of real-time extend GNSS for planting and inverting peanuts. Precision Agriculture. https://doi.org/10.1007/s11119-018-9616-z.

    Article  Google Scholar 

  • Eitel, J. U., Keefe, R. F., Long, D. S., Davis, A. S., & Vierling, L. A. (2010). Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors (Basel Switzerland), 10(4), 2843–2850. https://doi.org/10.3390/s100402843.

    Article  Google Scholar 

  • Embrapa—Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema Brasileiro de Classificação de Solos (3rd ed. Rev. ampl., p. 353). Brasília, DF: Empresa Brasileira de Pesquisa Agropecuária (Embrapa).

    Google Scholar 

  • Embratop. Receptor GPS Trimble R6 (L1/L2). 2017. Retrieved November 30, 2018, from http://www.embratop.com.br/produto/receptor-gps-trimble-r6-l1-l2/.

  • Ferreira, D. F., & Carneiro, D. F. (2009). Estatística básica (2nd ed., p. 664). Lavras, MG: UFLA.

    Google Scholar 

  • Ferri, C. P. (2002). Utilização da reflectância espectral para a estimativa de pigmentos fotossintéticos em dosséis de soja [Gycine max (L.), Merril]. p. 173. (INPE-8983-TDI/814). Tese (Doutorado em Sensoriamento Remoto)—Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

  • Fitzgerald, G. J., Rodriguez, D., Christensen, L. K., Belford, R., Sadras, V. O., & Clarke, T. R. (2006). Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 7, 233–248. https://doi.org/10.1007/s11119-006-9011-z.

    Article  Google Scholar 

  • Galvão, L. S., Almeida-Filho, R., & Vitorello, I. (2004a). Spectral discimination of hydrothermally altered-materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation, 7(2), 107–114. https://doi.org/10.1016/j.jag.2004.12.003.

    Article  Google Scholar 

  • Galvão, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discriminação de variedades de cana-de-açúcar com dados hiperespectrais do sensor Hyperion/EO-1. Revista Brasileira de Cartografia, 57(1), 7–14.

    Google Scholar 

  • Galvão, L. S., Formaggio, A., & Tisot, D. A. (2006). The influence of spectral resolution on discriminating Brazilian sugarcane varieties. International Journal of Remote Sensing, 27(4), 769–777. https://doi.org/10.1080/01431160500166011.

    Article  Google Scholar 

  • Galvão, L. S., Ponzoni, F. J., Epiphanio, J. C. N., Formaggio, A. R., & Rudorff, B. F. T. (2004b). Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data. International Journal of Remote Sensing, 25(10), 1861–1879. https://doi.org/10.1080/01431160310001598908.

    Article  Google Scholar 

  • Gates, D. M., Keegan, H. J., Chleter, J. C., & Weidner, V. R. (1965). Spectral properties of plants. Applied Optics, 4(1), 11–20. https://doi.org/10.1364/AO.4.000011.

    Article  Google Scholar 

  • Gausman, H. W., & Allen, W. A. (1973). Optical parameters of leaves of 30 plant species. Plant Physiology, 52(1), 57–62.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiology., 148, 501–508. https://doi.org/10.1016/S0176-1617(96)80285-9.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Viña, A., Verma, S. B., Rundquist, D. C., Arkebauer, T. J., Keydan, G., et al. (2006). Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research. https://doi.org/10.1029/2005JD006017.

    Article  Google Scholar 

  • Gleriani, J. M. (1994). Influência do solo e de fundo e da geometria da radiação na resposta espectral da cultura do feijão. p. 87. (INPE-5632-TDI/556). Dissertação (Mestrado em Sensoriamento Remoto)—Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

  • Gnyp, M. L., Miao, Y., Yuan, F., Ustin, S. L., Yu, K., Yao, Y., et al. (2014). Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Research, 155, 42–55. https://doi.org/10.1016/j.fcr.2013.09.023.

    Article  Google Scholar 

  • Gobbi, K. F., Garcia, R., Garcez Neto, A. F., Pereira, O. G., Ventrella, M. C., & Rocha, G. C. (2009). Características morfológicas, estruturais e produtividade do capim-braquiária e do amendoim forrageiro submetidos ao sombreamento. Revista Brasileira de Zootecnia, 38(9), 1645–1654. https://doi.org/10.1590/S1516-35982009000900002.

    Article  Google Scholar 

  • Grohs, D. S., Bredemeier, C., Mundstock, C. M., & Poletto, N. (2009). Modelo para estimativa do potencial produtivo em trigo e cevada por meio do sensor GreenSeeker. Engenharia Agrícola, 29(1), 101–112. https://doi.org/10.1590/S0100-69162009000100011.

    Article  Google Scholar 

  • Grohs, D. S., Bredemeier, C., Poletto, N., & Mundstock, C. M. (2011). Validação de modelo para predição do potencial produtivo de trigo com sensor óptico ativo. Pesquisa Agropecuária Brasileira, 46(4), 446–449. https://doi.org/10.1590/S0100-204X2011000400015.

    Article  Google Scholar 

  • Guo, C., Zhang, L., Zhou, X., Zhu, Y., Cao, W., Qiu, X., et al. (2018). Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precision Agriculture, 19(1), 55–78. https://doi.org/10.1007/s11119-017-9498-5.

    Article  Google Scholar 

  • Guyot, G., Hanocq, J. F., Lepne, T., Malet, P., & Verbrugghe, M. (1984). Étude des potentialities de SPOT poor suiure la evolution de couverts de céréales. L’Espace Geographique, 3, 257–264.

    Article  Google Scholar 

  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2005). Análise multivariada de dados (5th ed., p. 593). Porto Alegre, RS: Bookman.

    Google Scholar 

  • Hansen, P., & Schjoerring, J. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553. https://doi.org/10.1016/S0034-4257(03)00131-7.

    Article  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562–578. https://doi.org/10.3390/rs2020562.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.

    Article  Google Scholar 

  • Jensen, J. R. (2011). Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. 2. ed. São José dos Campos, SP: Parênteses. p. 598. Tradução de: Epiphanio, J. C. N.; Formaggio, A. R., Santos, A. R. dos, Rudorff, B. F. T., Almeida, C. M. de, & Galvão, L. S.

  • Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: Principles, techniques and applications (p. 353). Oxford: Oxford University Press.

    Google Scholar 

  • Kapp Júnior, C., Guimarães, A. M., & Caires, E. F. (2016). Use of active canopy sensors to discriminate wheat response to nitrogen fertilization under no-tillage. Engenharia Agrícola, 36(5), 886–894. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p886-894/2016.

    Article  Google Scholar 

  • Kazmier, L. J. (2007). Estatística aplicada à administração e economia (p. 392). Porto Alegre, RS: Bookman.

    Google Scholar 

  • Kimes, D. S. (1983). Dynamics of directional reflectance factor distributions for vegetation canopies. Applied Optics, 22(9), 1364–1372. https://doi.org/10.1364/AO.22.001364.

    Article  CAS  PubMed  Google Scholar 

  • Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Scharf, P. C., Palm, H. L., Roberts, D. F., et al. (2010). Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agronomy Journal, 102(1), 71–84. https://doi.org/10.2134/agronj2009.0114.

    Article  CAS  Google Scholar 

  • Kumar, R., & Silva, L. (1973). Light ray tracing through a leaf cross section. Applied Optics, 12, 2950–2954. https://doi.org/10.1364/AO.12.002950.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Miao, Y., Chen, X., Zhang, H., Jia, L., & Bareth, G. (2010a). Estimating winter wheat biomass and nitrogen status using an active crop sensor. Intelligent Automation and Soft Computing, 16(6), 1221–1230.

    Google Scholar 

  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., et al. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123. https://doi.org/10.1016/j.fcr.2013.12.018.

    Article  Google Scholar 

  • Li, F., Miao, Y., Henning, S. D., Gnyp, M. L., Chen, X., Jia, L., et al. (2010b). Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agriculture, 11(4), 335–357. https://doi.org/10.1007/s11119-010-9165-6.

    Article  Google Scholar 

  • Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV–vis spectroscopy, current protocols in food analytical chemistry (pp. F4.3.1–F4.3.8). New York: Wiley.

    Google Scholar 

  • Liu, W. T. H. (2006). Aplicações de sensoriamento remoto (2nd ed., p. 908). Campo Grande: UNIDERP.

    Google Scholar 

  • Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., Viator, H., & Dalen, M. (2012). Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors (Basel Switzerland), 12(6), 7529–7547. https://doi.org/10.3390/s120607529.

    Article  Google Scholar 

  • Luiz, A. J. B., & Epiphanio, J. C. N. (2001). Amostragem por pontos em imagens de sensoriamento remoto para estimativa de área plantada por município. In SIMPÓSIO BRASILEIRO DE SENSORIAMENTO, 10., 2001, Foz do Iguaçu. Anais… São José dos Campos: INPE, 2001, p.111-118. CD-ROM, On-line. ISBN 85-17-00016-1. (INPE-8212-PRE/4001).

  • Ma, B. L., Dwyer, L. M., Costa, C., Cober, E. R., & Morrison, M. J. (2001). Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal, 93(6), 1227–1234. https://doi.org/10.2134/agronj2001.1227.

    Article  Google Scholar 

  • Martins, G. D., & de Galo, M. L. B. T. (2015). Caracterização espectral da cana-de-açúcar infectada por nematoides e migdolus fryanus por espectrorradiometria de campo. Boletim de Ciências Geodésicas, 21(4), 783–796. https://doi.org/10.1590/S1982-21702015000400046.

    Article  Google Scholar 

  • McFadden, B. R., Brorsen, B. W., & Raun, W. R. (2018). Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating. Precision Agriculture, 19(1), 79–92. https://doi.org/10.1007/s11119-017-9499-4.

    Article  Google Scholar 

  • Menezes, P. C. D., Silva, R. P. D., Carneiro, F. M., Girio, L. A. D. S., Oliveira, M. F. D., & Voltarelli, M. A. (2018). Can combine headers and travel speeds affect the quality of soybean harvesting operations? Revista Brasileira de Engenharia Agrícola e Ambiental, 22(10), 732–738. https://doi.org/10.1590/1807-1929/agriambi.v22n10p732-738.

    Article  Google Scholar 

  • Miller, J. J., Schepers, J. S., Shapiro, C. A., Arneson, N. J., Eskridge, K. M., Oliveira, M. C., et al. (2018). Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crops Research, 216, 22–31. https://doi.org/10.1016/j.fcr.2017.11.006.

    Article  Google Scholar 

  • Minitab 18. Suporte ao Minitab 18: Distribuição normal. 2017. Retrieved October 2, 2017, from https://support.minitab.com/pt-br/minitab/18/help-and-how-to/probability-distributions-and-random-data/supporting-topics/distributions/normal-distribution/.

  • Minitab 18. Suporte ao Minitab®18: Visão geral de Correlação. 2019. Retrieved October 1, 2019, from https://support.minitab.com/pt-br/minitab/18/help-and-how-to/statistics/basic-statistics/how-to/correlation/before-you-start/overview/.

  • Molin, J. P., Amaral, L. R., & Colaço, A. F. (2015). Sensoriamento e sensores. In J. P. Molin, L. R. Amaral, & A. F. Colaço (Eds.), Agricultura de precisão (cap. 5, pp. 119–153). São Paulo, SP: Oficina de Textos.

    Google Scholar 

  • Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed., p. 754). Hoboken: Wiley.

    Google Scholar 

  • Moreira, M. A. (2012). Fundamentos do sensoriamento remoto e metodologias de aplicação (4th ed., atual. e ampl., p. 422). Viçosa, MG: UFV.

    Google Scholar 

  • Motomiya, A. V. A., Molin, J. P., & Chiavegato, E. J. (2009). Utilização de sensor óptico ativo para detectar deficiência foliar de nitrogênio em algodoeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(2), 137–145. https://doi.org/10.1590/S1415-43662009000200005.

    Article  Google Scholar 

  • Motomiya, A. V. A., Valente, I. M. Q., Molin, J. P., Motomiya, W. R., Biscaro, G. A., & Jordan, R. A. (2014). Índice de vegetação no algodoeiro sob diferentes doses de nitrogênio e regulador de crescimento. Semina: Ciências Agrarias, 35(1), 169–178. https://doi.org/10.5433/1679-0359.2014v35n1p169.

    Article  CAS  Google Scholar 

  • Mourtzinis, S., Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., et al. (2014). The use of reflectance data for in-season soybean yield prediction. Agronomy Journal, 106(4), 1159–1168. https://doi.org/10.2134/agronj13.0577.

    Article  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999–4014.

    Article  Google Scholar 

  • Pérez-Vicente, S., & Ruiz, M. Expósito. (2009). Descriptive statistics. Allergologia et Immunopathologia, 37(6), 314–320. https://doi.org/10.1016/j.aller.2009.10.005.

    Article  PubMed  Google Scholar 

  • Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44. https://doi.org/10.1007/s11119-011-9243-4.

    Article  Google Scholar 

  • Povh, F. P., Molin, J. P., Gimenez, L. M., Pauletti, V., Molin, R., & Salvi, J. V. (2008). Comportamento do NDVI obtido por sensor ótico ativo em cereais. Pesquisa Agropecuária Brasileira, 43(8), 1075–1083. https://doi.org/10.1590/S0100-204X2008000800018.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131–138. https://doi.org/10.2134/agronj2001.931131x.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36(19–20), 2759–2781. https://doi.org/10.1080/00103620500303988.

    Article  CAS  Google Scholar 

  • Richards, J. A. (1993). Remote sensing digital image analysis: An introduction (p. 340). Berlin: Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Third earth resources technology satellite-1 symposium (Vol. 1, pp. 309–330).

  • Rudorff, B. F. T., Aguiar, D. A., Silva, W. F., Sugawara, L. M., Goltz, E., Aulicino, T. L. I. N., et al. (2010). Uso de imagens de satélites de sensoriamento remoto para mapear a área cultivada com cana-de-açúcar no estado de São Paulo—safra 2009/10 (p. 46). São José dos Campos, SP: INPE.

    Google Scholar 

  • Shiratsuchi, L. S., Brandão, Z. N., Vicente, L. E., de Victoria, D. C., Ducati, J. R., de Oliveira, R. P., et al. (2014). Sensoriamento Remoto: conceitos básicos e aplicações na Agricultura de Precisão. In A. C. C. de Bernardi, J. M. de Naime, A. V. de Resende, L. H. Bassoi, & R. Y. Inamasu (Eds.), Agricultura de precisão: resultados de um novo olhar (cap. 4, pp. 58–73). Brasília, DF: Embrapa.

    Google Scholar 

  • Silva, V. F. A. (2013). Mobilização do solo e desempenho operacional de semeadora-adubadora com dois tipos de hastes sulcadoras em plantio direto de milho. 60 f. Dissertação (Mestrado)—Curso de Agronomia, Produção Vegetal, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal.

  • Stevenson, W. J. (2001). Estatística aplicada à administração (p. 495). São Paulo, SP: Harbra.

    Google Scholar 

  • Suporte ao Minitab® 18 (2019). Interpretar os principais resultados para Correlação. Retrieved April 18, 2019, from https://support.minitab.com/pt-br/minitab/18/help-and-how-to/statistics/basic-statistics/how-to/correlation/interpret-the-results/key-results/#step-1-examine-the-linear-relationship-between-variables-pearson.

  • Taskos, D. G., Koundouras, S., Stamatiadis, S., Zioziou, E., Nikolaou, N., Karakioulakis, K., et al. (2015). Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity. Precision Agriculture, 16(1), 77–98. https://doi.org/10.1007/s11119-014-9363-8.

    Article  Google Scholar 

  • Tavares, T. D. O., Borba, M. A. D. P., de Oliveira, B. R., da Silva, R. P., Voltarelli, M. A., & Ormond, A. T. S. (2018). Effect of soil management practices on the sweeping operation during coffee harvest. Agronomy Journal, 110(5), 1689–1696. https://doi.org/10.2134/agronj2017.10.0598.

    Article  Google Scholar 

  • Teal, R. K., Tubana, B., Girma, K., Freeman, K. W., Arnall, D. B., Walsh, O., et al. (2006). In-season prediction of corn grain yield potential using normalized difference vegetation index. Agronomy Journal, 98, 1488–1494. https://doi.org/10.2134/agronj2006.0103.

    Article  Google Scholar 

  • Thenkabail, P., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182. https://doi.org/10.1016/S0034-4257(99)00067-X.

    Article  Google Scholar 

  • Toledo, A., Tabile, R. A., da Silva, R. P., Furlani, C. E. A., Magalhâes, S. C., & Costa, B. O. (2008). Caracterização das perdas e distribuição de cobertura vegetal em colheita mecanizada de soja. Engenharia Agrícola, 28(4), 710–719. https://doi.org/10.1590/S0100-69162008000400011.

    Article  Google Scholar 

  • Trimble—Transforming the Way the World Works.2013. Especificações técnicas. Retrieved November 29, 2017, from http://www.geodata.eng.br/manuais/gps/trimble/R6.pdf.

  • USGS—United States Geological Survey. (2015). NDVI, the Foundation for Remote Sensing Phenology. United States Geological Survey. Retrieved May 31, 2018, from https://phenology.cr.usgs.gov/ndvi_foundation.php.

  • Valeriano, M. M. (1992). Reflectância espectral do trigo irrigado (Triticum aestivum, L.) por espectrorradiometria de campo e aplicação do modelo SAIL. 1992-05. p. 149 (INPE-5426-TDI/483). Dissertação (Mestrado em Sensoriamento Remoto)—Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

  • Van Niel, T. G., & McVicar, T. R. (2004). Current and potential uses of optical remote sensing in rice-based irrigation systems: A review. Australian Journal of Agricultural Research, 55(2), 155–185. https://doi.org/10.1071/AR03149.

    Article  Google Scholar 

  • Voltarelli, M. A., da Silva, R. P., Cassia, M. T., Ortiz, D. F., & Torres, L. S. (2015). Qualidade do corte basal de cana-de-açúcar utilizando-se de três modelos de facas. Engenharia Agrícola, 35(3), 528–541. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n3p528-541/2015.

    Article  Google Scholar 

  • Zanzarini, F. V., Pissarra, T. C. T., Brandão, F. J. C., Teixeira, D. D. B. (2013). Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+com atributos do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(6), 608–614. https://doi.org/10.1590/S1415-43662013000600006.

    Article  Google Scholar 

  • Zerbato, C., Cavichioli, F. A., Raveli, M. B., Marrafon, M., & da Silva, R. P. (2013). Controle Estatístico de Processo aplicado à colheita mecanizada de milho. Engenharia na agricultura, 21(3), 261–270.

    Article  Google Scholar 

  • Zerbato, C., Furlani, C. E. A., Ormond, A. T. S., da Silva Gírio, L. A., Carneiro, F. M., & da Silva, R. P. (2017). Statistical process control applied to mechanized peanut sowing as a function of soil texture. PLoS ONE, 12(7), e0180399. https://doi.org/10.6084/m9.figshare.4204665.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciele Morlin Carneiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morlin Carneiro, F., Angeli Furlani, C.E., Zerbato, C. et al. Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precision Agric 21, 979–1007 (2020). https://doi.org/10.1007/s11119-019-09704-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09704-3

Keywords

Navigation