Skip to main content

Advertisement

Log in

Monitoring nitrogen status of potatoes using small unmanned aerial vehicles

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Small unmanned aircraft vehicles (UAV) are potential remote sensing platforms for precision agriculture. However, to be useful for in-season management, nitrogen status needs to be estimated sufficiently early in the growing season. To determine when differences in nitrogen status of irrigated potatoes could be detected, an experiment was established in 2013 with a randomized block design with four N fertilization rates and three replicates. Over the growing season, a small parafoil-wing UAV was used to acquire color-infrared images with pixel sizes between 20 and 25 mm. Two normalized difference spectral indices were determined from image digital numbers, the normalized difference vegetation index (NDVI) and the green normalized difference vegetation index (GNDVI), which were then calibrated using reflectance-based NDVI and GNDVI. Unexpectedly, there were decreases in the NDVI and GNDVI calibrations with increased camera exposure time. After calibration, both NDVI and GNDVI were about equal to indices calculated using reflectances from high-altitude aerial photography and the WorldView-2 satellite. During tuber initiation and early tuber bulking, differences in measured leaf area index (LAI), chlorophyll meter values and spectral indices were only detectable at the lowest N fertilization rate. Later in the growing season, all N treatments could be distinguished in the imagery, but too late to mitigate yield losses from N deficiency. Linear relationships between plot GNDVI and NDVI were hypothesized to differ among N treatments because there would be less chlorophyll content per leaf area. Contrary to the hypothesis, there were no differences among fertilization rates on either of the two sampling dates. Compared with alternative technologies, small UAV platforms and sensors may not provide value to farmers for in-season nitrogen management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguerrebere, C., Delon, J., Gousseau, Y., & Musé, P. (2013). Study of the digital camera acquisition process and statistical modeling of the sensor raw data. HAL Archives-Ouvertes, hal-00733538. Retrieved February 22, 2017, from https://hal.archives-ouvertes.fr/hal-00733538v4.pdf.

  • Alva, L. (2004). Potato nitrogen management. Journal of Vegetable and Crop Production, 10, 97–132.

    Article  Google Scholar 

  • Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture, 15, 579–592.

    Article  Google Scholar 

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  • Baret, F., Houlès, V., & Guérif, M. (2007). Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. Journal of Experimental Botany, 58, 869–880.

    Article  CAS  PubMed  Google Scholar 

  • Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., et al. (2005). MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. In A. M. Larar, M. Suzuki, and Q. Tong (Eds.), Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, Proceedings of SPIE, Vol. 5655 (pp 88–95). Bellingham, Washington, USA: SPIE, International Society for Optics and Photonics.

  • Blackmer, T. M., Schepers, J. S., Varvel, G. E., & Meyer, G. E. (1996). Analysis of aerial photography for nitrogen stress within corn fields. Agronomy Journal, 88, 729–733.

    Article  Google Scholar 

  • Bouman, B. A. M., Uenk, D., & Haverkort, A. J. (1992). The estimation of ground cover of potato by reflectance measurements. Potato Research, 35, 111–125.

    Article  Google Scholar 

  • Cambouris, A. N., Zebarth, B. J., Ziadi, N., & Perron, I. (2014). Precision agriculture in potato production. Potato Research, 57, 249–262.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.

    Article  Google Scholar 

  • Chen, J., Venkataraman, K., Bakin, D., Rodricks, B., Gravelle, R., Rao, P., et al. (2009). Digital camera imaging system simulation. IEEE Transactions on Electron Devices, 56, 2496–2505.

    Article  CAS  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration for leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Deever, A., Kumar, M., & Pillman, B. (2013). Digital camera image formation: Processing and storage. In H. T. Sencar & M. Memon (Eds.), Digital image forensics (pp. 45–77). New York, New York, USA: Springer.

    Chapter  Google Scholar 

  • Eitel, J. U. H., Long, D. S., Gessler, P. E., & Hunt, E. R. (2008). Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agronomy Journal, 100, 1674–1702.

    Article  Google Scholar 

  • Farrell, J. E., Catrysse, P. B., & Wandell, B. A. (2012). Digital camera simulation. Applied Optics, 51, A80–A90.

    Article  PubMed  Google Scholar 

  • Fitzgerald, G. J. (2010). Characterizing vegetation indices derived from active and passive sensors. International Journal of Remote Sensing, 31, 4335–4348.

    Article  Google Scholar 

  • Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115.

    Article  Google Scholar 

  • Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403.

    Article  Google Scholar 

  • Goffart, J. P., Olivier, M., & Frankinet, M. (2008). Potato crop nitrogen status assessment to improve N fertilization management and efficiency: past–present–future. Potato Research, 51, 355–383.

    Article  CAS  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46, 423–437.

    Article  Google Scholar 

  • Hatfield, J. L., & Walthall, C. L. (2015). Meeting global food needs: realizing the potential via genetics × environment × management interactions. Agronomy Journal, 107, 1215–1226.

    Article  Google Scholar 

  • Hopkins, B. G., Horneck, D. A., Pavek, M. J., Geary, B. D., Olsen, N. L., Ellsworth, J. W., et al. (2007). Evaluation of potato production best management practices. American Journal of Potato Research, 84, 19–27.

    Article  Google Scholar 

  • Hunt, E. R., & Daughtry, C. S. T. (2014). Chlorophyll meter calibrations for chlorophyll content using measured and simulated leaf transmittances. Agronomy Journal, 106, 931–939.

    Article  CAS  Google Scholar 

  • Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T., & McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, 2, 290–305.

    Article  Google Scholar 

  • Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote sensing of leaf chlorophyll content using a visible band index. Agronomy Journal, 103, 1090–1099.

    Article  Google Scholar 

  • Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., & Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103–112.

    Article  Google Scholar 

  • Hunt, E. R., Daughtry, C. S. T., Mirsky, S. B., & Hively, W. D. (2014). Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 7, 4566–4571.

    Article  Google Scholar 

  • Jenkins, D., & Vasigh, B. (2013). The economic impact of unmanned aircraft systems integration in the United States (p. 40). Arlington, Virginia, USA: Association for Unmanned Vehicle Systems International.

    Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833–3845.

    Article  Google Scholar 

  • Johnson, D. A., Alldredge, J. R., Hamm, P. B., & Frazier, B. E. (2003). Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology, 93, 805–812.

    Article  PubMed  Google Scholar 

  • Khot, L. R., Sankaran, S., Carter, A. H., Johnson, D. A., & Cummings, T. F. (2016). UAS imaging-based decision tools for arid winter wheat and irrigated potato production management. International Journal of Remote Sensing, 37, 125–137.

    Article  Google Scholar 

  • Kooistra, L., & Clevers, J. G. P. W. (2016). Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sensing Letters, 7, 611–620.

    Article  Google Scholar 

  • Lebourgeois, V., Bégué, A., Labbé, S., Houlès, M., & Martiné, J. F. (2012). A light-weight multispectral aerial imaging system for nitrogen crop monitoring. Precision Agriculture, 13, 525–541.

    Article  Google Scholar 

  • Li, Y., Chen, D., Walker, C. N., & Angus, J. F. (2010). Estimating the nitrogen status of crops with a digital camera. Field Crops Research, 118, 221–227.

    Article  Google Scholar 

  • McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1, 125–152.

    Article  Google Scholar 

  • Moran, M. S., Bryant, R. B., Clarke, T. R., & Qi, J. (2001). Deployment and calibration of reference reflectance tarps for use with airborne imaging sensors. Photogrammetric Engineering & Remote Sensing, 67, 273–286.

    Google Scholar 

  • Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114, 358–371.

    Article  Google Scholar 

  • Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104, 1336–1347.

    Article  Google Scholar 

  • Nguy-Robertson, A., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein, A., Herrmann, I., et al. (2014). Estimating green LAI in four crops: potential of determining optimal spectral bands for a universal algorithm. Agricultural and Forest Meteorology, 192–193, 140–148.

    Article  Google Scholar 

  • Nigon, T. J., Mulla, D. J., Rosen, C. J., Cohen, Y., Alchanatis, V., & Rud, R. (2014). Evaluation of the nitrogen sufficiency index for use with high resolution, broadband aerial imagery in a commercial potato field. Precision Agriculture, 15, 202–226.

    Article  Google Scholar 

  • Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8(10), e77151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, J., Ntakos, G., Nielson, J., Svensgaard, J., Poulsen, R. N., & Christensen, S. (2016). Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, 74, 75–92.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. p. 309–317. In S. C. Freden, E. P. Mercanti, & M. Becker (Eds.) Proceedings of the Third Earth Resources Technology Satellite-1 Symposium. Vol. 1: Technical Presentations. NASA SP-351 (pp. 309–317). Washington, DC, USA: National Aeronautics and Space Administration.

  • Scharf, P. C., & Lory, J. A. (2002). Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal, 94, 397–404.

    Article  Google Scholar 

  • Scharf, P. C., Shannon, D. K., Palm, H. L., Sudduth, K. A., Drummond, S. T., Kitchen, N. R., et al. (2011). Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agronomy Journal, 103, 1683–1691.

    Article  Google Scholar 

  • Shanahan, J. F., Kitchen, N. R., Raun, W. R., & Schepers, J. S. (2008). Responsive in-season nitrogen management for cereals. Computers and Electronics in Agriculture, 61, 51–62.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (2012). Biometry: The principles and practice of statistics in biological research (4th ed., p. 937). New York, NY, USA: Freeman and Co.

    Google Scholar 

  • Tetracam, Inc. (2011). ADC users guide V2.3. Chatsworth, California, USA: Tetracam, Inc.

    Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • van Evert, F. K., Booij, R., Jukema, J. N., ten Berge, H. F. M., Uenk, D., Meurs, E. J. J., et al. (2012). Using crop reflectance to determine sidedress N rate in potato saves N and maintains yield. European Journal of Agronomy, 43, 58–67.

    Article  Google Scholar 

  • Vega, F. A., Ramírez, F. C., Saiz, M. P., & Rosúa, F. O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering, 132, 19–27.

    Article  Google Scholar 

  • Wu, J., Wang, D., Rosen, C. J., & Bauer, M. E. (2007). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 101, 96–103.

    Article  Google Scholar 

  • Wüller, D., & Gabele, H. (2007). The usage of digital cameras as luminance meters. 65020U-1. In R. A. Martin, J. M. DiCarlo, & N. Sampat (Eds.), Digital photography III, proceedings of SPIE (Vol. 6502). Bellingham, Washington, USA: SPIE, International Society for Optics and Photonics.

    Google Scholar 

  • Yue, J., Lei, T., Li, C., & Zhu, J. (2012). The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intelligent Automation & Soft Computing, 18, 1043–1052.

    Article  Google Scholar 

  • Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13, 693–712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

USDA-ARS, Oregon State University, and Paradigm ISR were funded in part by Boeing Research & Technology. Thomas Hagen and Daniel J. Gadler (both retired) were the original principal investigators from Boeing Research & Technology. We thank Paul Parks (retired) from Boeing Research & Technology for project management. Digital Globe provided WorldView-2 data via a partnership with USDA for demonstrating the utility of higher spectral and spatial resolution imagery for agriculture. We thank Randall P. Franzen (Paradigm ISR) for piloting the Hawkeye UAV and Alan J. Stern (USDA-ARS) for the MODTRAN simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Raymond Hunt Jr..

Additional information

Robert W. Turner and Daniel J. Gadler are retired.

Donald A. Horneck: Passed away on 28 September 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, E.R., Horneck, D.A., Spinelli, C.B. et al. Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precision Agric 19, 314–333 (2018). https://doi.org/10.1007/s11119-017-9518-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9518-5

Keywords

Navigation