Skip to main content

Advertisement

Log in

Strategy of statistical model selection for precision farming on-farm experiments

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Nitrogen (N) fertilization implies two important issues: N enhances grain yields and quality, but applied in excess, nitrous oxide emissions and nitrate leaching may be induced. To reduce environmental impacts, spatial N variability in agricultural fields can be adapted using crop sensors. In on-farm experiments, sensor-based variable rate N application is compared to uniform N application, which is common agricultural practice. On-farm experiments (OFE) provide special considerations as opposed to on-station trials. In OFE, the experimental units in farmer-managed fields are considerably larger, which raises the question if soil heterogeneity may be fully controlled by the experimental design (random treatment allocation and blocking). Grain yield monitoring systems are used increasingly in OFE and provide spatially correlated data. As a consequence, classical analysis of variance is not a valid option. An alternative four-step strategy of statistical model selection is presented, generalizing the assumptions of classical analysis of variance within the framework of linear mixed models. Soil heterogeneity is preliminary identified in step 1 and finalized in step 2 using covariate combinations (analysis of covariance). Yield data correlations are handled in step 3 using geo-statistical models. The last step estimates treatment effects and derives the statistical inference. Analyses of three OFE revealed that different covariate combinations and geo-statistical models were needed for each trial, which involves higher analytical efforts than for on-station trials. These efforts can be minimized by following the steps provided in this study to find a best model approximation. Nevertheless, model selection in precision farming OFE will always accompany some uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Blackmore, S., Godwin, R. J., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering, 84(4), 455–466.

    Article  Google Scholar 

  • Brenning, A., Leithold, P., & Piotraschke, H. (2008). Geostatistical analysis of on-farm trials in precision agriculture. Proceedings, GEOSTATS 2008, 8th international geostatistics congress (p. 6). Santiago, Chile. http://www.agricon.de/on-farm-research/theorie/geostatistik. Accessed 20 April 2009.

  • Brownie, C., Bowman, D. T., & Burton, J. W. (1993). Estimating spatial variation in analysis of data from yield trials: a comparison of methods. Agronomy Journal, 885, 1244–1253.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference. A practical information-theoretic approach. New York: Springer.

    Book  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: theory, principles and guidelines. Agronomy Journal, 95, 455–471.

    Article  Google Scholar 

  • Delin, S., Lindén, B., & Berglund, K. (2005). Yield and protein response to fertilizer nitrogen in different parts of a cereal field: potential of site-specific fertilization. European Journal of Agronomy, 22, 325–336.

    Article  Google Scholar 

  • Ebertseder, T., Schmidhalter, U., Gutser, R., Hege, U., & Jungert, J. (2005). Evaluation of mapping and on-line fertilizer application strategies in multi-year and multi-location static field trials for increasing nitrogen use efficiencies of cereals. In: Proceedings of the 5th European conference on precision agriculture (p. 327–335). Uppsala, Sweden.

  • Ehlert, D., & Dammer, K. H. (2006). Wide-scale testing of the Crop-Meter for site-specific farming. Precision Agriculture, 7, 101–115.

    Article  Google Scholar 

  • Ehlert, D., Hammen, V. C., & Adamek, R. (2003). On-line sensor pendulum-meter for determination of plant mass. Precision Agriculture, 4, 139–148.

    Article  Google Scholar 

  • Gebbers, R., & Adamchuk, V. (2010). Precision agriculture and food security. Science, 327, 828–830.

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld, J., Weiss, J., Preidl, M., & Korbun, T. (2008). Klimawirkungen der Landwirtschaft in Deutschland [climate change in Germany]. Berlin: Schriftenreihe des IÖW.

    Google Scholar 

  • Hong, N., White, J. G., Gumpertz, M. L., & Weisz, R. (2005). Spatial analysis of precision agriculture treatments in randomised complete blocks: guidelines for covariance model selection. Agronomy Journal, 97, 1082–1096.

    Article  Google Scholar 

  • Hooks, T., Marx, D., Kachman, S., Pedersen, J., & Eigenberg, R. (2008). Analysis of covariance with spatially correlated secondary variables. Revista Colombiana de Estadística, 31(1), 95–109.

    Google Scholar 

  • Hurley, T. M., Malzer, G. L., & Kilian, B. (2004). Estimating site-specific nitrogen crop response functions: a conceptual framework and geo-statistical model. Agronomy Journal, 96, 1331–1343.

    Article  Google Scholar 

  • Isensee, E., Thiessen, E., & Treue, P. (2003). Perennial experiences with site-specific fertilization and harvest. Agricultural Engineering Research, 9(5), E50–E62.

    Google Scholar 

  • Lambert, D. M., Lowenberg-DeBoer, J., & Bongiovanni, R. (2004). A comparison of four spatial regression models for yield monitor data: a case study from Argentina. Precision Agriculture, 5, 579–600.

    Article  Google Scholar 

  • Lemaire, G., Recous, S., & Mary, B. (2004). Managing residues and nitrogen in intensive cropping systems. New understanding of efficient recovery by crops. Precision farming—Challenges and future directions. In: Proceedings of the 4th international crop science congress new directions for a diverse planet (p. 19). Brisbane, Australia. http://www.cropscience.org.au/icsc2004/symposia/2/6/936_lemaireg.htm#TopOfPage. Accessed 5 May 2008.

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models (2nd ed.). Cary, NC: SAS Institute.

    Google Scholar 

  • Littell, R. C., Pendergast, J., & Natarajan, R. (2000). Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine, 19, 1793–1819.

    Article  PubMed  CAS  Google Scholar 

  • Piepho, H. P., Richter, C., Spilke, J., Hartung, K., Kunick, A., & Thöle, H. (2011). Statistical aspects of on-farm experimentation. Crop and Pasture Science, 62, 721–735.

    Article  Google Scholar 

  • Piringer, G., & Steinberg, L. J. (2006). Reevaluation of energy use in wheat production in the United States. Journal of Industrial Ecology, 10, 149–167.

    Article  CAS  Google Scholar 

  • Richter, C., & Kroschewski, B. (2006). Some considerations on the use of geostatistical methods in agricultural field trials. Part II: Comparison of theoretical considerations with results from real data. Biometrical Letters, 43(2), 67–77.

    Google Scholar 

  • Richter, C., & Kroschewski, B. (2012). Geostatistical models in agricultural field experiments: Investigations based on uniformity trials. Agronomy Journal, 104, 91–105.

    Article  Google Scholar 

  • Richter, C., Kroschewski, B., Michel, V., & Zenk, A. (2007). Analysis of standard designs using spatial models. In H. Bleiholder & H. P. Piepho (Eds.), Agricultural field trials—today and tomorrow, proceedings of the international symposium (pp. 176–181), Stuttgart-Hohenheim, Germany.

  • Ritter, C., Dicke, D., Weis, M., Oebel, H., Piepho, H. P., Büchse, A., et al. (2008). An on-farm approach to quantify yield variation to derive decision rules for site-specific weed management. Precision Agriculture, 9, 133–146.

    Article  Google Scholar 

  • Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Boca Raton: Chapman and Hall.

    Google Scholar 

  • Schneider, M., Spilke, J., & Wagner, P. (2007). Evaluation of on-farm field trials—the example of site-specific nitrogen fertilization trials. In H. Bleiholder & H. P. Piepho (Eds.), Agricultural field trials—today and tomorrow, proceedings of the international symposium (pp. 209–214), Stuttgart-Hohenheim, Germany.

    Google Scholar 

  • Shanahan, J. F., Kitchen, N. R., Raun, W. R., & Schepers, J. S. (2008). Responsive in-season nitrogen management for cereals. Computers and Electronics in Agriculture, 61, 51–62.

    Article  Google Scholar 

  • Thöle, H. (2008). Nitrogen fertilization of cereal crops under Eastern German conditions. In A. Jezierska-Thöle & L. Kozlowski (Eds.), Gospodarka przestrzenna—w strefie kontinuummiejsko-wiejskiego w Polsce (pp. 449–460). Poland: Wydawnictwo Naukowe Uniwersytetu Mikolaja Kopernika.

    Google Scholar 

  • Thöle, H., & Ehlert, D. (2010). Biomass related nitrogen fertilization with a crop sensor. Applied Engineering in Agriculture, 26(5), 769–775.

    Google Scholar 

  • Thöle, H. (2010). Approaches for statistical analysis of on-farm trials with spatial data (Ansätze zur statistischen Auswertung von On-Farm-Experimenten mit georeferenzierten Daten). Ph.D. thesis, Humboldt-University of Berlin, Germany.

  • Thöle, H., Richter, C., Kroschewski, B., & Ehlert, D. (2007). Analysis of site-specific N-fertilization on-farm trials under assumption of spatial covariance structures. Agricultural Engineering Research, 13(6), 207–213.

    Google Scholar 

  • Thorburn, P. J., Biggs, J. S., & Weier Keating, K. L. (2003). Nitrate in groundwater of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems & Environment, 94(1), 49–58.

    Article  CAS  Google Scholar 

  • Zimmerman, L. D., & Harville, D. H. (1991). A random field approach to the analysis of field-plot experiments and other spatial experiments. Biometrics, 47, 223–239.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Federal Ministry of Nutrition, Agriculture and Consumer Protection (BMELV) in Germany. We would like to thank Rolf Adamek, Antje Giebel and Michael Heisig for their support. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Thöle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thöle, H., Richter, C. & Ehlert, D. Strategy of statistical model selection for precision farming on-farm experiments. Precision Agric 14, 434–449 (2013). https://doi.org/10.1007/s11119-013-9306-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-013-9306-9

Keywords

Navigation