Skip to main content
Log in

Spatial and temporal stability of soil phosphate concentration and pasture dry matter yield

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Several methods are described that could be used by a farm manager to define the spatial and temporal stability within a field from a series of yield maps. A quantitative analysis of soil phosphate concentration and pasture dry matter yield data over 4 years (2004–2007) were investigated to identify the spatial and temporal stability in a 6 ha pasture field. The data were combined into two maps that characterize the spatial and temporal variation recorded over the 4 years. The two maps were then combined to create a single map with five management classes, each with different characteristics that can have an impact on the way the field is managed. These categories are: high yielding and stable, high yielding and moderately stable, low yielding and stable, low yielding and moderately stable and unstable. The unstable class represents 83 and 93% of the total area with regard to soil phosphate concentration and pasture dry matter yield, respectively. Results from this study show that the significant temporal stability found cancels out over time, leaving a relatively homogenous map of spatial variation. The implication of the findings is that each pasture field should be managed according to the current year’s conditions. These results also justify a further study that evaluates the soil phosphorous dynamics under Mediterranean conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Afyuni, M. M., Cassel, D. K., & Robarge, W. P. (1993). Effect of landscape position on soil water and corn silage yield. Soil Science Society America Journal, 57, 1573–1580.

    Article  Google Scholar 

  • Blackmore, S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture, 26, 37–51.

    Article  Google Scholar 

  • Blackmore, S., Godwin, R., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering, 84, 455–466. doi:10.1016/S1537-5110(03)00038-2.

    Article  Google Scholar 

  • Daniels, M. B., Delaune, P., Moore, P. A., Mauromoustakos, A., Chapman, S. L., & Langston, J. M. (2001). Soil phosphorus variability in pastures: Implications for sampling and environmental management strategies. Journal of Environmental Quality, 30, 2157–2165.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, R. B., Gilliam, J. W., Cassel, D. K., & Nelson, L. A. (1987). Quantifying the effects of past soil erosion on the present productivity. Journal of Soil Water Conservation, 42, 183–187.

    Google Scholar 

  • Efe Serrano, J. (2006). Pastagens do Alentejo: Bases técnicas sobre caracterização, pastoreio e melhoramento. In Universidade de Évora- ICAM (Ed.), Évora (pp. 165–178). Portugal: Gráfica Eborense (in Portuguese).

    Google Scholar 

  • FAO. (1998). World reference base for soil resources. World soil resources report no 84. Rome, Italy: Food and Agriculture Organization of the United Nations.

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environmental and Planning A, 30, 1905–1927. doi:10.1068/a301905.

    Article  Google Scholar 

  • Gatiboni, L. C., Kaminsku, J., Pellegrini, J., Brunetto, G., Saggin, A., & Flores, J. (2000). Influence of phosphorous fertilization and introduction of winter forage species on forage offer from natural pasture. Pesquisa Agropecuária Brasileira, 35, 1663–1668. doi:10.1590/S0100-204X2000000800020.

    Article  Google Scholar 

  • Gillingham, A. G. (2001). Precision management of fertiliser application to pasture. In: Proceedings of the first Australian geospatial information and agriculture conference (pp. 534–541). Sydney, Australia: NSW Agriculture.

    Google Scholar 

  • Jetz, W., Rahbek, C., & Lichstein, J. W. (2005). Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 14, 97–98. doi:10.1111/j.1466-822X.2004.00129.x.

    Article  Google Scholar 

  • Makowski, D., Tremblay, M., Debroize, D., & Laurent, F. (2000). Epandage d’engrais: La vigilance s’impose! Perspectives Agricoles, 263, 55. (in French).

    Google Scholar 

  • Mallarino, A. P., & Wittry, D. J. (2004). Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precision Agriculture, 5, 131–144. doi:10.1023/B:PRAG.0000022358.24102.1b.

    Article  Google Scholar 

  • Marques da Silva, J. R., Peça, J. O., Serrano, J. M., Carvalho, M. J., & Palma, P. M. (2008). Evaluation of spatial and temporal variability of pasture based on topography and the quality of the rainy season. Precision Agriculture, 9, 209–229. doi:10.1007/s11119-008-9066-0.

    Article  Google Scholar 

  • Martiniello, P., D’Agnano, G., Piadalino, O., & Nardelli, F. (1995). Effect of fertilization on flora, biomass and seed production and soil fertility in four natural pastures of the Mediterranean basin. In Groupe de Travail Méditerranéen du Réseau Interrégional FAO/CIHEAM de Recherche et Développement sur les Pâturages et les Cultures Fourragères (Ed.), Sylvopastoral systems. environmental, agricultural and economic sustainability, cahiers options Mediterranéennes (pp. 87–90). Zaragoza, Spain: CIHEAM-IAMZ.

    Google Scholar 

  • McCormick, S., Jordan, C., & Bailey, J. (2009). Within and between-field spatial variation in soil phosphorus in permanent grassland. Precision Agriculture, 10, 262–276. doi:10.1007/s11119-008-9099-4.

    Article  Google Scholar 

  • Peça, J. O., Serrano, J. M., Roma, J., Silva, J. R., Mendes, J., Palma, P., et al. (2005). Variable rate application of fertilizer in a permanent pasture––An account of the first year of experimental tests in Portugal. In J. Boaventura & A. Offer (Eds.), Proceedings of the 5th conference of the European federation for information technology in agriculture, food and environment; 3rd world congress in agriculture and natural resources (pp. 1241–1245). Vila Real, Portugal: EFITA-WCCA.

  • Petersen, R. G. (Ed.). (1994). Agricultural field experiments, design and analysis. New York, USA: Marcel Dekker, Inc.

    Google Scholar 

  • Rao, I. M., Barrios, E., Amezquita, E., Friesen, D. K., Thomas, R., Oberson, A., et al. (2004). Soil phosphorus dynamics, acquisition and cycling in crop-pasture-fallow systems in low fertility tropical soils: A review from Latin America. In R. J. Delve & M. E. Probert (Eds.), ACIAR proceedings, modelling nutrient management in tropical cropping systems (pp. 126–134). Canberra, Australia: ACIAR.

    Google Scholar 

  • Rook, A. J., Dumont, B., Isselstein, J., Osoro, K., Wallis, D., Parente, G., et al. (2004). Matching type of livestock to desired biodiversity outcomes in pastures––a review. Biology Conservation, 119, 137–150.

    Article  Google Scholar 

  • Sadler, E. J., Bauer, P. J., & Busscher, W. J. (1995). Spatial corn yield during drought in the SE Coastal Plain. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Site-specific management for agricultural systems (pp. 365–382). Madison, WI, USA: American Society of Agronomy.

    Google Scholar 

  • Schellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 29, 59–71. doi:10.1016/j.eja.2008.05.005.

    Article  Google Scholar 

  • Vrindts, E., Mouazen, A. M., Reyniers, M., Maertens, K., Maleki, M. R., Ramon, H., et al. (2005). Management zones based on correlation between soil compaction, yield and crop data. Biosystems Engineering, 92, 419–428. doi:10.1016/j.biosystemseng.2005.08.010.

    Article  Google Scholar 

  • Wang, Q., Ni, J., & Tenhunen, J. (2005). Application of a geographically-weighted regression analysis net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14, 379–393. doi:10.1111/j.1466-822x.2005.00153.x.

    Article  Google Scholar 

  • Wright, R. J., Boyer, D. G., Winant, W. M., & Perry, H. D. (1990). The influence of soil factors on yield differences among landscape positions in an Appalachian cornfield. Soil Science, 149, 375–382.

    Article  Google Scholar 

  • Xu, H.-W., Wang, K., Bailey, J., Jordan, C., & Withers, A. (2006). Temporal stability of sward dry matter and nitrogen yield patterns in a temperate grassland. Pedosphere, 16, 735–744. doi:10.1016/S1002-0160(06)60109-4.

    Article  Google Scholar 

  • Zhang, L., Bi, H., Cheng, P., & Davis, C. J. (2004). Modelling spatial variation in tree diameter-height relationships. Forest Ecology and Management, 189, 317–329. doi:10.1016/j.foreco.2003.09.004.

    Article  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the AGRO Programme of the Ministry of Agriculture of Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, J.M., Peça, J.O., Marques da Silva, J.R. et al. Spatial and temporal stability of soil phosphate concentration and pasture dry matter yield. Precision Agric 12, 214–232 (2011). https://doi.org/10.1007/s11119-010-9170-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9170-9

Keywords

Navigation