Skip to main content
Log in

Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

An effective technique to measure foliage chlorophyll concentration (Chl) at a large scale and within a short time could be a powerful tool to determine fertilization amount for crop management. The objective of this study was to investigate the inversion of foliage Chl vertical-layer distribution by bi-directional reflectance difference function (BRDF) data, so as to provide a theoretical basis for monitoring the growth and development of winter wheat and for providing guidance on the application of fertilizer. Remote sensing could provide a powerful tool for large-area estimation of Chl. Because of the vertical distribution of leaves in a wheat stem, Chl vertical distribution characteristics show an obvious decreasing trend from the top of the canopy to the ground surface. The ratio of transformed chlorophyll absorption reflectance index (TCARI) to optimized soil adjusted vegetation index (OSAVI) was called the canopy chlorophyll inversion index (CCII) in this study. The value of CCII at nadir, ±20 and ±30°, at nadir, ±30 and ±40°, and at nadir, ±50 and ±60° view angles were selected and assembled as bottom-layer Chl inversion index (BLCI), middle-layer Chl inversion index (MLCI), and upper-layer Chl inversion index (ULCI), respectively, for the inversion of Chl at the vertical bottom layer, middle layer, and upper layer. The root mean squared error (RMSE) between BLCI-, MLCI-, and ULCI-derived and laboratory-measured Chl were 0.7841, 0.9426, and 1.7398, respectively. The vertical foliage Chl inversion could be used to monitor the crop growth status and to guide fertilizer and irrigation management. The results suggested that vegetation indices derived from bi-directional reflectance spectra (e.g., BLCI, ULCI, and MLCI) were satisfactory for inversion of the Chl vertical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll concentration

BRDF:

Bi-directional reflectance difference function

TCARI:

Transformed chlorophyll absorption reflectance index

CARI:

Chlorophyll absorption in reflectance index

OSAVI:

Optimized soil adjusted vegetation index

CCII:

TCARI/OSAVI

BLCI:

Bottom-layer Chl inversion index

MLCI:

Middle-layer Chl inversion index

ULCI:

Upper-layer Chl inversion index

RMSE:

The root mean squared error

LOV:

Leaf orientation value

LAD:

Leaf angle distribution

VZA:

View zenith angles

References

  • Adamsen, F. J., Pinter, P. J., Barnes, E. M., LaMorte, R. L., Wall, G. W., Leavitt, S. W., et al. (1999). Measuring wheat senescence with a digital camera. Crop Science, 39, 719–724.

    Article  Google Scholar 

  • Anten, N. P. R., Schieving, F., & Werger, M. J. A. (1995). Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 101, 504–513.

    Article  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts Polyphenoloxidae in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, R. J., Mobley, K. N., Marini, R. P., & Pfeiffer, D. G. (1990). Growing conditions influence mite damage on apple and peach leaves. Horticultural Science, 25, 445–448.

    Google Scholar 

  • Connor, D. J., Sadras, V. O., & Hall, A. J. (1995). Canopy N distribution and the photosynthetic performance of sunflower crops during grain filling—a quantitative analysis. Oecologia, 101, 274–281.

    Article  Google Scholar 

  • Curran, P. J., Dungan, J. L., Macler, B. A., & Plummer, S. E. (1991). The effect of a red edge pigment on the relationship between red-edge and chlorophyll concentration. Remote Sensing of Environment, 35, 69–75.

    Article  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown, E., & Mcmurtrey, J. E. (2000). Estimating corn leaf chlorophyll content from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • Demarez, V., & Gastellu-Etchegorry, J. P. (2000). A modeling approach for studying forest chlorophyll content. Remote Sensing of Environment, 71, 226–238.

    Article  Google Scholar 

  • Filella, I., Serrano, L., Serra, J., & Penuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35, 1400–1405.

    Article  Google Scholar 

  • Haboudane, D., Miller, J., & Tremblay, N. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll concentration for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Hikosaka, K., Terashima, I., & Katoh, S. (1994). Effects of leaf age, nitrogen nutrition and photo flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 97, 451–457.

    Article  Google Scholar 

  • Huang, W. J., Niu, Z., Wang, J. H., Liu, L. Y., Zhao, C. J., & Liu, Q. (2006). Identifying crop leaf angle distribution based on two- temporal and bidirectional canopy reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3601–3609.

    Article  Google Scholar 

  • Huang, W. J., Wang, J. H., Liu, L. Y., Zhao, C. J., Wang, Z. J., & Wang, J. D. (2004a). Inversion of biochemical parameters by selection of proper vegetation index in winter wheat. Agricultural Sciences in China, 33, 178–185.

    Google Scholar 

  • Huang, W. J., Wang, J. H., Wang, Z. J., Zhao, C. J., Liu, L. Y., & Wang, J. D. (2004b). Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance. International Journal of Remote Sensing, 25(12), 2409–2419.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  • Kim, M. S., Daughtry, C. S. T., Chappelle, E. W., Mcmurtrey III, J. E. (1994). The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation. In Proceedings of the sixth symposium on physical measurements and signatures in remote sensing, Val D’Isere, France, pp. 299–306, January 17–21.

  • Lemaire, G., Onillon, B., Gosse, G., et al. (1991). Nitrogen distribution with in a lucerne canopy during regrowth, relation with light distribution. Annals of Botany, 68, 483–488.

    Google Scholar 

  • Massart, D. L., Vandeginste, B. G. M., Deming, S. M., Michotte, Y., & Kaufman, L. (1988). Chemometrics: A textbook, data handling in science and technology (Vol. 2, pp. 41–48). NewYork: Elsevier.

    Google Scholar 

  • Miller, J. R., Wu, J., Boyer, M. G., Belanger, M., & Hare, E. W. (1991). Seasonal patterns in leaf reflectance red-edge characteristics. International Journal of Remote Sensing, 12, 1509–1523.

    Article  Google Scholar 

  • Pearcy, R. W., & Seemann, J. R. (1990). Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1–5-bisphosphate carboxylase and stomatal conductance. Plant Physiology, 94(2), 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, G. E., Pearce, R. B., & Mock, J. J. (1977). Leaf orientation distribution and yield of maize. Crop Science, 17, 883–886.

    Article  Google Scholar 

  • Poorter, L., Oberbauer, S. F., & Clark, D. B. (1995). Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Botanical Society of America, 82(10), 1257–1263.

    Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–101.

    Article  Google Scholar 

  • Shadchina, T. M., Dmitrieva, V. V., & Morgoun, V. V. (1998). Inter-relation between nitrogen status of the plants, leaf chlorophyll and grain yield in various winter wheat cultivars. Acta Agronomica Hungarica, 46, 25–34.

    Google Scholar 

  • Shiraiwa, T., & Sinclair, T. R. (1993). Distribution of N among leaves in soybean canopies. Crop Science, 33, 804–808.

    Article  CAS  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Thomas, J. R., & Gausman, H. W. (1977). Leaf reflectance versus leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, 69, 799–802.

    Article  CAS  Google Scholar 

  • Thomas, H., Nicholas, C. C., Samuel, B. C., Michael, A. W., Mathew, B., Andrew, B., et al. (2009). Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing. Remote Sensing of Environment, 113, 421–434.

    Article  Google Scholar 

  • Thomas, J. R., & Oerther, G. F. (1972). Estimating nitrogen concentration of sweet pepper leaves by reflectance measurements. Agronomy Journal, 64, 11–13.

    Article  Google Scholar 

  • Vouillot, M. O., & Devienne-Barret, F. (1999). Accumulation and remobilization of nitrogen in a vegetative winter wheat crop during or following nitrogen deficiency. Annals of Botany, 3, 569–575.

    Article  Google Scholar 

  • Wang, Z. J., Wang, J. H., Liu, L. Y., & Huang, W. J. (2004). Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Research, 90(2&3), 11–321.

    Google Scholar 

  • Wang, Z. J., Wang, J. H., Liu, L. Y., Huang, W. J., Zhao, C. J., & Lu, Y. L. (2005a). Estimation of nitrogen deficiency at middle and bottom layers of winter wheat canopy by using ground measured canopy reflectance. Communications in Soil Science and Plant Analysis, 36(17&18), 2289–2300.

    Article  CAS  Google Scholar 

  • Wang, J. H., Wang, Z. J., Uchida, S., & Huang, W. J. (2009). Relative discrimination of planophile and erectophile wheat types using multi-temporal spectrum measurements. Japan Agricultural Research Quarterly, 43(2), 157–166.

    Google Scholar 

  • Wang, Z. J., Wang, J. H., Zhao, C. J., Zhao, M., Huang, W. J., & Wang, C. Z. (2005b). Vertical distribution of nitrogen in different layers of leaf and stem and their relationship with grain quality of winter wheat. Journal of Plant Nutrition, 28(1), 73–91.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491–1507.

    Article  Google Scholar 

  • Zhao, C. J., Jiang, A. N., Huang, W. J., Liu, K. L., Liu, L. Y., & Wang, J. H. (2007). Evaluation of variable-rate nitrogen recommendation of winter wheat based on SPAD measurement. New Zealand Journal of Agricultural Research, 50, 735–741.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was subsidized by the National High Tech R&D Program of China (2006AA10A302, 2006AA10Z203, 2008AA10Z214), National Natural Science Foundation of China (40701119, 40701120), and Special Funds for Major State Basic Research Project (2007CB714406, 2005CB121103). The authors are grateful to Mr. Weiguo Li, and Mrs. Hong Chang for data collection. We also thank Dr. Benjiamin Li for his editing and improving of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiang Huang.

Additional information

Wenjiang Huang is an associate professor of application of quantitative remote sensing in agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wang, Z., Huang, L. et al. Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Precision Agric 12, 165–178 (2011). https://doi.org/10.1007/s11119-010-9166-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9166-5

Keywords

Navigation