Skip to main content
Log in

Soil spatial variability and site-specific fertilization maps in an apple orchard

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In the present study, the spatial variability of some soil physical and chemical properties in a 0.8 ha apple orchard were studied. Sixty soil samples were taken from two sampling depths: 0–0.3 m and 0.3–0.6 m. The soil samples were analyzed for the following soil properties: soil texture, pH, cation exchange capacity and NO3–N, NH4–N, P, K, Na, Ca, Mg, Fe, Zn, Mn, Cu, B and organic matter content. Data analysis indicated that most of the nutrients were at sufficient levels. The site-specific application map for N was created based on the amount of N that was removed from the soil with the yield of the previous year. By applying N site-specifically, 38% of N could be saved compared to uniform application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhatti, A. U., Mulla, D. J., & Frazier, B. E. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment, 37, 181–191.

    Article  Google Scholar 

  • Bongiovanni, R., & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359–387.

    Article  Google Scholar 

  • Brady, C. N. (1984). The nature and properties of soils (Chapter 5, 9th ed.). New York: Macmillan Publishing Co.

  • Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1, 5–14.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. K., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Earl, R., Wheeler, P. N., Blackmore, B. S., & Godwin, R. J. (1996). Precision farming—the management of variability. Landwards, 51(4), 18–23.

    Google Scholar 

  • Gemtos, T., Fountas, S., Blackmore, S., Griepentog, H. W. (2002). Precision farming in Europe and the Greek potential. In A. Sideridis & C. Yialouris (Eds.), HAICTA 2002, Proceedings of the 1st Greek conference on information and communication technology in agriculture (pp. 45–55). Athens, Greece: Agricultural University of Athens.

  • Graeff, S., & Claupein, W. (2003). Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy, 19, 611–618.

    Article  CAS  Google Scholar 

  • IFA. (1992). International Fertilizer Association. World Fertilizer Use Manual. Available at http://www.fertilizer.org/ifa/Home-Page/LIBRARY/World-Fertilizer-Use-Manual/by-common-names, last accessed January 2010.

  • Koukoulakis, P. (1995). Basic principles of rational fertilization of crops. Crop and Animal Husbandry, 9, 43–61. (in Greek).

    Google Scholar 

  • Lopez-Granados, F., Jurado-Exposito, M., Alamo, S., & Garcia-Torres, L. (2004). Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21, 209–222.

    Article  CAS  Google Scholar 

  • Minasny, B., McBratney, A. B., Whelan, B. M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006. (http://www.usyd.edu.au/su/agric/acpa, last accessed August 2009).

  • Nava, G., Dechen, A., & Nachtigall, G. (2008). Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Communications in Soil Science and Plant Analysis, 39, 96–107.

    Article  CAS  Google Scholar 

  • Plaster, J. E. (1992). Soil science and management (Chapter 9). Albany, New York: Delmar Publishers Inc.

  • Pontikis, K. (2003). Applied pomology (p. 74). Athens, Greece: Stamoulis Publications. (in Greek).

  • Schachtl, J., Huber, G., Maidl, F. X., & Sticksel, E. (2005). Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precision Agriculture, 6, 143–156.

    Article  Google Scholar 

  • Sharma, D. D., & Chauhan, J. S. (2005). Effect of different rootstocks on root distribution of apple. Acta Hort, 696, 167–171.

    Google Scholar 

  • Shukla, M. K., Slater, B. K., Lal, R., & Cepuder, P. (2004). Spatial variability of soil properties and potential management classification of a chernozemic field in lower Australia. Soil Science, 169, 852–860.

    Article  CAS  Google Scholar 

  • Vasilakakis, M. (2004). General and specialized pomology (pp. 276–311). Thessaloniki, Greece: Gartaganis Publications. (in Greek).

  • Zaman, Q., & Schuman, W. A. (2006). Nutrient management zones for citrus based on variation in soil properties and tree performance. Precision Agriculture, 7, 45–63.

    Article  Google Scholar 

  • Zaman, Q., Schuman, W. A., & Miller, W. M. (2005). Variable rate nitrogen application in florida citrus based on ultrasonically-sensed tree size. Applied Engineering in Agriculture, 21, 331–335.

    Google Scholar 

Download references

Acknowledgements

The project was funded by the Greek Ministry of Education through the PYTHAGORAS II programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Aggelopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggelopoulou, K.D., Pateras, D., Fountas, S. et al. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precision Agric 12, 118–129 (2011). https://doi.org/10.1007/s11119-010-9161-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9161-x

Keywords

Navigation