Skip to main content
Log in

Mapping crop ground cover using airborne multispectral digital imagery

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Empirical relationships between remotely sensed vegetation indices and canopy density information, such as leaf area index or ground cover (GC), are commonly used to derive spatial information in many precision farming operations. In this study, we modified an existing methodology that does not depend on empirical relationships and extended it to derive crop GC from high resolution aerial imagery. Using this procedure, GC is calculated for every pixel in the aerial imagery by dividing the perpendicular vegetation index (PVI) of each pixel by the PVI of full canopy. The study was conducted during the summer growing seasons of 2007 and 2008, and involves airborne and ground truth data from 13 agricultural fields in the Southern High Plains of the USA. The results show that the method described in this study can be used to estimate crop GC from high-resolution aerial images with an overall accuracy within 3% of their true values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bagwell, R. D., Temple, J. H., Leonard, B. R., Paxton, K. W., Downer, R., Price, R., & Magoun, D. (2005). Demonstration of spatially variable plant growth regulator and defoliant treatments to cotton. In P. Dugger & D. Richter (Eds.), Proceedings of the 2005 beltwide cotton conferences (pp. 2185–2188). New Orleans, LA, 4–7 Jan 2005. Memphis, TN: National Cotton Council America.

  • Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental physics. New York: Springer-Verlag.

    Google Scholar 

  • Emerine, D. M. (2006). Variable and reduced rate nitrogen application based on multispectral aerial imagery and directed field sampling. In D. Richter (Ed.), Proceedings of the 2006 beltwide cotton conference (pp. 2128–2131). San Antonio, TX, 3–6 Jan 2006. Memphis, TN: National Cotton Council America.

  • Fitzgerald, G. J., Maas, S. J., & De Tar, W. R. (2004). Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Precision Agriculture, 5, 279–289. doi:10.1023/B:PRAG.0000032766.88787.5f.

    Article  Google Scholar 

  • Jensen, J. R. (2000). Remote sensing of the environment, an Earth resource perspective. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Khalilian, A., Henderson, W., & Hallman, R. (2007). Site-specific application of plant growth regulators in cotton. In S. Boyd, et al. (Eds.), Proceedings of the 2007 beltwide cotton conferences (pp. 902–907). New Orleans, LA, 9–12 Jan 2007. Memphis, TN: National Cotton Council America.

  • Kirkpatrick, M. T., Dodds, D. M., Reynolds, D. B., Irby, J. T., Huff, J. A., O’Hara, C. G., & Willers, J. L. (2006). Utilizing aerial imagery to make site-specific defoliation applications to cotton. In D. Richter (Ed.), Proceedings of the 2006 beltwide cotton conference (p. 493). San Antonio, TX, 3–6 Jan 2006. Memphis, TN: National Cotton Council America.

  • Maas, S. J., Brightbill, J., & Hooton, J. (2004). Remote sensing for precision agriculture in the Texas High Plains. In P. Dugger & D. Richter (Eds.), Proceedings of the 2004 beltwide cotton conferences (pp. 184–187). San Antonio, TX, 5–9 Jan 2004. Memphis, TN: National Cotton Council America.

  • Maas, S. J., Brightbill, J., Lascano, R., Krieg, D., Bronson, K., Brashears, A., Hequet, E., Segarra, E., Parajulee, M., & Wanjura, D. (2003). Precision agriculture in the Texas High Plains. In J. M. LaRose (Ed.), Proceedings of the 6th annual national conservation tillage, cotton and rice conference (pp. 58–61). Perryville, MO: National Conservation Tillage Digest.

  • Maas, S. J., & Rajan, N. (2008). Estimating ground cover of field crops using medium-resolution multispectral satellite imagery. Agronomy Journal, 100, 320–327. doi:10.2134/agrojnl2007.0140.

    Article  Google Scholar 

  • Mahiny, A. S., & Turner, B. J. (2007). A comparison of four common atmospheric correction methods. Photogrammetric Engineering and Remote Sensing, 73, 361–368.

    Google Scholar 

  • McFall, A., Teague, T. G., Coy, S., Wildy, D., Danforth, D. M., Robertson, B., Bourland, F., & Wells, D. (2004). Determining optimal timing of site-specific applications of cotton harvest aid materials using remotely sensed imagery and the COTMAN plant monitoring system. In P. Dugger & D. Richter (Eds.), Proceedings of the 2004 beltwide cotton conferences (pp. 302–307). San Antonio, TX, 5–9 Jan 2004. Memphis, TN: National Cotton Council America.

  • Monteith, J. L., & Unsworth, M. (1990). Principles of Environmental Physics. London, England: Arnold Publishers.

    Google Scholar 

  • Moran, M. S., Clarke, T. R., Qi, J., Barnes, E. M., & Pinter, P. J. Jr. (1997). Practical techniques for conversion of airborne imagery to reflectances. In J. Everitt (Ed.), Proceedings of the 16th biennial workshop on videography and color photography in resource assessment (pp. 82–95). Bethesda, MD: American Society for Photogrammetry and Remote Sensing.

  • Ostle, B., & Mensing, R. W. (1975). Statistics in research. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.

    Google Scholar 

  • Richardson, A. J., Wiegand, C. L., Wanjura, D. F., Dusek, D., & Steiner, J. L. (1992). Multisite analyses of spectral-biophysical data for sorghum. Remote Sensing of Environment, 41, 71–82. doi:10.1016/0034-4257(92)90062-O.

    Article  Google Scholar 

  • Teague, T. G., Coy, S., Ismanov, M., Wildy, D., Danforth, D. M., & Mazaffari, M. (2005). Comparison of broadcast and image-based, variable rate application of mepiquat chloride on crop growth and fruit retention using the COTMAN crop monitoring system. In P. Dugger & D. Richter (Eds.), Proceedings of the 2005 beltwide cotton conferences (pp. 2124–2135). New Orleans, LA, 4–7 Jan 2005. Memphis, TN: National Cotton Council America.

  • Wiegand, C. L., Gerbermann, A. H., Gallo, K. P., Blad, B. L., & Dusek, D. (1990). Multisite analyses of spectral-biophysical data for corn. Remote Sensing of Environment, 33, 1–16. doi:10.1016/0034-4257(90)90051-M.

    Article  Google Scholar 

  • Wiegand, C. L., Maas, S. J., Aase, J. K., Hatfield, J. H., Pinter, P. J., Jr., Jackson, R. D., et al. (1992). Multisite analyses of spectral-biophysical data for wheat. Remote Sensing of Environment, 42, 1–21. doi:10.1016/0034-4257(92)90064-Q.

    Article  Google Scholar 

  • Wrona, A. F., Bradow, J. M., Bauer, P., Maas, S. J., Sadler, E. J., Clark, R., et al. (1998). Remote sensing: Value in a bird’s-eye view. Cotton Physiology Today, 9, 13–15.

    Google Scholar 

Download references

Acknowledgments

The authors thank Texas Alliance for Water Conservation (TAWC) for funding the study. The authors thank Dr. Wenxuan Guo for providing technical assistance during aerial flight missions. The authors also thank Mr. Shyam. S. Nair for his help in collecting field data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithya Rajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, N., Maas, S.J. Mapping crop ground cover using airborne multispectral digital imagery. Precision Agric 10, 304–318 (2009). https://doi.org/10.1007/s11119-009-9116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-009-9116-2

Keywords

Navigation