Skip to main content
Log in

Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Signals for site-specific nitrogen-top-dressing can be obtained by a sensor mounted on a tractor. The plant appearance can serve as a criterion. The question is which plant criteria provide pertinent information and how this can be indicated. Increasing the nitrogen-supply changes leaf colour from yellow-green to blue-green via the chlorophyll-concentration in the leaves and leads to growth of plants. Present sensing systems measure either chlorophyll concentration in the leaves, total area of the leaves or crop resistance against bending. The aim and purpose of this study is to outline prospects for application. Therefore, the emphasis is on results and not on experimental methods, to which references are given. Mainly optical sensing systems relying on reflectance or fluorescence are dealt with. Good signals of the nitrogen-supply can be obtained from the red edge plus the near infrared range of the reflectance. The results with some new spectral indices were better than those with standard spectral indices. Fluorescence sensing instead of reflectance sensing eliminates erroneous signals from bare soil. However, only low supply rates were clearly indicated. The biomass of the crop or the total area of its leaves is a very important criterion. Reflectance indices can take this into account. Fluorescence signals are barely influenced by this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baille, A. (1993). Artificial light sources for crop production. In C. Varlet-Grancher et al. (Eds.), Crop Structure and Light Microclimate (pp. 107–120). Paris: Institut National de la Recherche Agronomique.

    Google Scholar 

  • Belanger, M. C., Viau, A. A., Samson, G., & Chamberland, M. (2005). Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agronomy Journal, 97, 1515–1523.

    Article  CAS  Google Scholar 

  • Bredemeier, C., & Schmidhalter, U. (2005). Laser-induced chlorophyll fluorescence sensing to determine biomass and nitrogen uptake of winter wheat under controlled environment and field condition. In J. V. Stafford (Eds.), Proceedings of the 5th European Conference on Precision Agriculture (pp. 273–280). The Netherlands: Wageningen Academic Publishers.

  • Ehlert, D., & Schmerler, J. (2001). Sensor-based real-time application of late nitrogen fertilizer in winter-wheat. In G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European Conference on Precision Agriculture (pp. 911–916). Agro: Ecole Nationale Superior Agronomique, Montpellier.

  • Felton, W. L., & McCloy, R. (1992). Spot Spraying. Agricultural Engineering, 73, 9–12.

    Google Scholar 

  • Günther, K. P., Dahn, H. G., & Lüdeker, W. (1999). Laser-induced-fluorescence, a new method for “precision farming”. In R. Bill et al. (Eds.), Sensorsysteme in Precision Farming. Workshop September 27–28/1999, (University of Rostock, Germany, Institut für Geodäsie und Geoinfomatik) (pp. 133–144).

  • Guyot, G. (1993). Measurement of plant canopy fluorescence. In C. Varlet-Grancher, et al. (Eds.), Crop Structure and Light Microclimate (pp. 77–91). Paris: Institut National de la Recherche Agronomique.

    Google Scholar 

  • Guyot, G. (1998). Physics of the environment and climate. Chichester: Wiley, p. 49.

    Google Scholar 

  • Guyot, G., Baret, F., & Major, D. J. (1988). High spectral resolution: Determination of spectral shifts between the red and infrared. International Archives of Photogrammetry and Remote Sensing, 11, 750–760.

    Google Scholar 

  • Heege, H. J., & Reusch, S. (1996). Sensor for on-the-go control of site specific nitrogen top dressing. Paper No. 961018 ASAE, St Joseph, MI, USA.

  • Heege, H. J., & Thiessen, E. (2002). On the go sensing for site-specific nitrogen top dressing. Paper No. 021113 ASAE, St Joseph, MI, USA.

  • Hinzman, L. D.,Bauer, M. E., & Daughtry, C. S. T. (1986). Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment, 19, 47–61.

    Article  Google Scholar 

  • Jongschaap, R. E. E. (2001). Integrating remote sensing information in dynamic simulation models: Sensing nitrogen status in a potato crop. In G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European Conference on Precision Agriculture (pp. 923–927). Agro: Ecole Nationale Superior Agronomique, Montpellier.

  • Kappen, L., Hammler, A., & Schultz, G. (1998). Seasonal changes in the photosynthetic capacity of winter rape plants under different nitrogen regimes in the field. Journal Agronomy and Crop Science, 181, 179–187.

    Article  CAS  Google Scholar 

  • Lawrence, K. C., Bosoon, P., Heitschmidt, G., & Windham, W. R. (2005). LED lightning for use in multispectral and hyperspectral imaging. Paper No. 053073 ASAE, St Joseph, MI, USA.

  • Meier, U. (2001). Growth stages of mono—and dicoledoneous plants (2nd ed.). BBCH Monograph, Federal Biological Research Center for Agriculture and Forestry, Braunschweig, Germany (pp.14–18). http://www.bba.de/veroeff/bbch/bbcheng.pdf.

  • Mistele, B., Gutser, R., & Schmidhalter, U. (2004). Validation of field-scaled spectral measurements of the nitrogen status in winter wheat. In Remote Sensing, Seventh International Conference on Precision Agriculture, July 25–28. Minneapolis, Minnesota (edited by Precision Agriculture Center, University of Minnesota).

  • Mullen, R. W., Freeman, K. W., Raun, W. R., Johnson, G. V., Stone, M. L., Solie, J. B. (2003). Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agronomy Journal, 95, 347–351.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, W. R., Freeman, K. W., Thomason, W. E., & Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Article  Google Scholar 

  • Reckleben, Y. (2003). Ertrags- und Proteinunterschiede von Weizen bei teilflächenspezifischer Bewirtschaftung (Differences in yield and protein-content with site-specific treatments for wheat). Landtechnik, 58, 242–243.

    Google Scholar 

  • Reckleben, Y. (2004). Innovative Echtzeitsensorik zur Bestimmung und Regelung der Produktqualität von Getreide während des Mähdruschs (Innovative real time sensing for recording and controlling of product-quality of small grains during combining). Forschungsbericht Agrartechnik 424 (doctoral thesis, Department of Agricultural Systems Engineering, University of Kiel, Germany).

  • Reckleben, Y., & Isensee, E. (2004). Einflüsse auf Proteingehalt und Ertrag bei Getreide. (Influences on protein-content and yield of grains). Landtechnik, 59, 144–145.

    Google Scholar 

  • Reusch, S. (1997). Entwicklung eines reflexionsoptischen Sensors zur Erfassung der Stickstoffversorgung landwirtschaftlicher Kulturpflanzen (Development of an optical reflectance sensor for recording the nitrogen-supply of agricultural crops). Forschungsbericht Agrartechnik 303 (doctoral thesis, Department of Agricultural Systems Engineering, University of Kiel, Germany).

  • Reusch, S. (2003). Optimisation of oblique-view remote measurement of crop N-uptake under changing irradiance conditions. In J. V. Stafford & A. Werner (Eds.), Proceedings of the 5th European Conference on Precision Agriculture (pp. 573–578.). The Netherlands: Wageningen Academic Publishers.

  • Reusch, S. (2005). Optimum waveband selection for determining the nitrogen uptake in winter wheat by active remote sensing. In J. V. Stafford (Ed.), Proceedings of the 5th European Conference on Precision Agriculture (pp. 261–266). The Netherlands: Wageningen Academic Publishers.

  • Schmid, A., & Maidl, F. X. (2005). Optimierung der teilflächenspez. Bestandesführung mit berührungsloser Sensorik nach Bestandesheterogenität (Optimising site-specific crop management by contact-free sensing the heterogenity of the canopy). In IKB Dürnast, Teilprojekt 9, Abschluss-Symposium., Technical. Univers. Munich http://www.ikb.weihenstephan.de/ikb2/deutsch/symposium/pdf/schmid.pdf.

  • Schepers, J. S., Hagopian, D. S., & Farvel, G. E. (1998). Monitoring Crop Stresses. In Illinois Fertilizer Conference Proceedings, January 26–28, 1998, report 16, p. 3. http://www.frec.cropsci.uiuc.edu/1998/report16/index.htm.

  • Serrano, L., Fillela, I., & Penuelas, J. (2000). Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science, 40, 723–731.

    Article  Google Scholar 

  • Sticksel, E., Huber, G., Liebler, J., & Schächtl, J. (2004). The effect of diurnal variations of canopy reflectance on the assessment of biomass formation in wheat. In Remote Sensing, Seventh International Conference on Precision Agriculture, July 25–28, Minneapolis, Minnesota (edited by Precision Agriculture Center, University of Minnesota).

  • Stone, M. L., Solie, J. B., Raun, W. R.,Whitney, R. W., Taylor, S. L., & Ringer, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE, 39, 1623–1631.

    Google Scholar 

  • Thiessen, E. (2001). Erfahrungen mit der sensorgesteuerten Stickstoffdüngung (Experiences with sensor-controlled nitrogen-applic.). Landtechnik, 56, 278–279.

    Google Scholar 

  • Thiessen, E. (2002). Optische Sensortechnik für den teilflächenspezifischen Einsatz von Agrarchemikalien (Optical sensing-techniques for site-specific application of agricultural chemicals). Forschungsbericht Agrartechnik 399 (doctoral thesis, Department of Agricultural Systems Engineering, University of Kiel, Germany).

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Heege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heege, H.J., Reusch, S. & Thiessen, E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agric 9, 115–131 (2008). https://doi.org/10.1007/s11119-008-9055-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9055-3

Keywords

Navigation