Skip to main content
Log in

A two-stage optimal motion planner for autonomous agricultural vehicles

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This paper presents a two-stage motion planning algorithm which can compute low-cost motions for autonomous agricultural vehicles, for a given cost function defined over the entire path (e.g., shortest path, maximum clearance, etc.). In the first stage, the algorithm utilizes randomized motion planning to explore the space of possible motions and computes a feasible sub-optimal trajectory. In the second stage, the optimization of the stage-1 motion is formulated within the optimal control framework and function-space gradient descent is used to minimize the cost of the entire motion. The numerical results suggest that the two-stage motion planner can compute optimal or quasi-optimal motions in free space very quickly. In the presence of obstacles however, the execution time increases significantly. Furthermore, kino-dynamic, or dynamic motion models seem to be necessary in order to produce smooth motion trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barraquand J, Latombe J-C (1991) Robot motion planning: A distributed representation approach. Int J Robot Res 10(6):628–649

    Google Scholar 

  • Betts J (1998) Survey of numerical methods for trajectory optimisation. J Guid Control Dynam 21(2):193–207

    Article  Google Scholar 

  • Ferentinos K, Arvanitis K, Sigrimis N (2002) Heuristic optimisation methods for motion planning of autonomous agricultural vehicles. J Global Optim 23:155–170

    Article  Google Scholar 

  • Hansen AC, Hornbaker RH, Zhang Q (2003) Monitoring and analysis of in-field grain handling operations [Electronic-only]. In Quick G (ed) Proceedings of the international conference on crop harvesting and processing (Louisville, Kentucky USA). St Joseph, MI: ASAE (ASAE Publication Number 701P1103e)

  • Have H, Blackmore SB, Keller B, Fountas S, Nielsen H, Theilby F (2002) Development of an autonomous Christmas tree weeder—a feasibility study (Pesticide Research No. 59). Danish Environmental Protection Agency, Copenhagen, Denmark

  • Kavraki L, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE T Robotic Autom 12(4):566–580

    Article  Google Scholar 

  • Keicher R, Seufert H (2000) Automatic guidance for agricultural vehicles in Europe. Comput Electron Agri 25:169–194

    Article  Google Scholar 

  • Kirk DE (1970) Optimal control theory: An introduction. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Kushner HJ, Yin GG (1997) Stochastic approximation algorithms and applications. Springer, New York, Berlin, Heidelberg

    Google Scholar 

  • Larsen E, Gottschalk S, Lin M, Manocha D (1999) Fast proximity queries with swept sphere volumes (Technical Report TR99-018). Department of Computer Science, University of North Carolina, Chapel Hill, NC

  • Laumond J-P, Sekhavat S, Lamiraux F (1998) Guidelines in nonholonomic motion planning for mobile robots. In: Laumond J-P (eds) Robot motion planning and control. Springer, Berlin, New York, Heidelberg, pp 1–53

    Chapter  Google Scholar 

  • LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400

    Article  Google Scholar 

  • Makino T, Yokoi H, Kakazu Y (1999) Development of a motion planning system for an agricultural mobile robot. In: Conference of the Society of Instrumentation and Control Engineers (SICE): Proceedings of the 38th annual conference (pp. 959–962). Japan: Morioka

  • Noguchi N, Terao H (1997) Path planning of an agricultural mobile robot by neural network and genetic algorithm. Comput Electron Agri 18:187–204

    Article  Google Scholar 

  • Oksanen T, Visala A (2004, October) Optimal control of tractor-trailer system in headlands. In Zhang Q, Iida M, Mizushima A (eds) Automation technology for off-road equipment: Proceedings of the conference (Kyoto, Japan). St Joseph, MI: ASAE (ASAE Publication Number 701P1004)

  • Reid JF, Zhang Q, Noguchi N, Dickson M (2000) Comput Electron Agri 25:155–167

    Google Scholar 

  • Sage AP, White CC (1977) Optimum systems control, 2nd ed. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Torii T (2000) Research in autonomous agriculture vehicles in Japan. Comput Electron Agri 25:133–153

    Article  Google Scholar 

  • Torisu R (1997) Optimal path of headland for tractors by optimal control theory. J Jpn Society Agri Machin 59(4):31–36

    Google Scholar 

  • Vougioukas SG (2004) Near-optimal path planning for autonomous tractors. In AgEng 2004: Proceedings of the international agricultural engineering conference (Paper No. 355). Leuven, Belgium

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vougioukas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vougioukas, S., Blackmore, S., Nielsen, J. et al. A two-stage optimal motion planner for autonomous agricultural vehicles. Precision Agric 7, 361–377 (2006). https://doi.org/10.1007/s11119-006-9022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-006-9022-9

Keywords

Navigation