Skip to main content

Advertisement

Log in

Management Zones Classified With Respect to Drought and Waterlogging

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Within-field variations in potential grain yield may be due to variations in plant available soil water. Different water holding capacities affect yield differently in different years depending on weather. By estimating plant-water availability in different weathers, scenarios could be created of how yield potential and thereby fertilizer demand may vary within fields. To test this, measured cereal grain yields from a dry, a wet and an intermediate year were compared with different soil moisture related variables in a Swedish arable field consisting of clayey and sandy areas. Soil water budget calculations based on weather data and maximum plant available water (PAW), estimated from soil type and rooting data, were used to assess drought. A reasonable correlation between estimated and measured soil moisture was achieved. In the dry year, drought days explained differences in yield between the clayey and the sandy soil, but yield was better explained directly by maximum PAW, elevation, clay content and soil electrical conductivity (SEC). Yield correlated significantly with SEC and elevation within the sandy soil in the dry year and within the clayey soil in the wet year, probably due to water and nitrogen limitation respectively. Dense SEC, elevation and yield data were therefore used to divide the field into management zones representing different risk levels for drought and waterlogging. These could be used as a decision support tool for site-specific N fertilization, since both drought and waterlogging affect N fertilization demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, S. 1955. Markfysikaliska undersökningar i odlad jord. VIII. En experimentel method. (Soil physical investigations on arable soil. VIII. An experimental method.) Grundförbättring 8, Specialnumber 2, 98 pp (in Swedish).

  • Andersson, S. and Wiklert, P. 1972. Markfysikaliska undersökningar i odlad jord. XXIII. Om de vattenhållande egenskaperna hos svenska jordarter. (Soil physical investigations on arable soil XXIII. About the water holding characteristics of Swedish soils.) Grundförbättring 2–3 1972 ÅRG.25. 143 pp. (In Swedish).

  • Berglund, K., Berglund, Ö. and Gustafson Bjuréus, A. 2002. Markstrukturindex – ett sätt att bedöma jordarnas fysikaliska status och odlingssystemets inverkan på markstrukturen (Soil structure index, a method to evaluate the physical status of the soil and the effect of the farming system on soil structure). Sveriges lantbruksuniveritet Uppsala. Avd. f. lantbrukets hydroteknik, Avdelningsmeddelande 02:4, 132 pp (in Swedish).

  • P. A. Burrough P. F. M. Gaans Particlevan R. Hootsmans (1997) ArticleTitleContinuous classification in soil survey: Spatial correlation, confusion and boundaries Geoderma 77 115–135 Occurrence Handle10.1016/S0016-7061(97)00018-9

    Article  Google Scholar 

  • P. A. Burrough R. A. McDonnell (1998) Principles of Geographical Information Systems. Spatial Information Systems and Geostatistics Oxford University Press New York, NY, USA 333

    Google Scholar 

  • S. Delin B. Lindén (2002) ArticleTitleRelations between net nitrogen mineralization and soil characteristics within an arable field Acta Agriculturae Scandinavica, Section B. Soil and Plant Science 52 78–85

    Google Scholar 

  • S. Delin B. Lindén K. Berglund (2005) ArticleTitleYield and protein response to fertilizer nitrogen in different parts of a cereal field: potential of site-specific fertilization European Journal of Agronomy 22 325–336 Occurrence Handle10.1016/j.eja.2004.05.001

    Article  Google Scholar 

  • Egnér, H., Riehm, H. and Domingo, W. R. 1960. Untersuchungen über die chemische Bodenanayse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- and Kaliumbestimmung (Investigations on soil chemical analysis as a basis of the evaluation of plant nutrient status of soils II. Chemical extraction methods for phosphorous and potassium determination). Annals of the Royal agricultural college of Sweden 26, 199–215 (in German).

  • Ekström, G. 1927. Klassifikation av svenska åkerjordar. (Classification of Swedish arable soils) Sveriges Geologiska Undersökning, Ser C, No. 345 (Årsbok 20). (In Swedish).

  • Erpenbeck, J. M. 1982. Irrigation Scheduling – A Review of Techniques and Adaptation of the USDA Irrigation Scheduling Computer Program for Swedish Conditions. Swedish University of Agricultural Sciences, Uppsala. Department of Soil Sciences, Division of Agricultural Hydrotechnics, Report 127, 135 pp.

  • P. A. Finke D. Goense (1993) ArticleTitleDifferences in barley grain yields as a result of soil variability Journal of Agricultural Science 120 171–180

    Google Scholar 

  • K. L. Fleming D. G. Westfall D. W. Wiens M. C. Brodahl (2000) ArticleTitleEvaluating farmer defined management zone maps for variable rate fertilizer application Precision Agriculture 2 201–215 Occurrence Handle10.1023/A:1011481832064

    Article  Google Scholar 

  • G. J. Gaskin J. D. Miller (1996) ArticleTitleMeasurement of soil water content using a simplified impedance measuring technique Journal of Agricultural Engineering Research 63 153–160 Occurrence Handle10.1006/jaer.1996.0017

    Article  Google Scholar 

  • G. W. Gee J. W. Bauder (1986) Particle-size analysis A. Klute (Eds) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods Agronomy 9. ASA Madison, Wisconsin, USA 383–411

    Google Scholar 

  • Hill, R. W. 1991. Irrigation Sceduling. Modeling Plant and Soil Systems. ASA-CSSA-SSSA, Madison, Wisconsin, USA, Agronomy Monograph no. 31, pp. 491–509.

  • P.-E. Jansson J. Claréus (1996) Pgraph v.1.3. User’s Manual. Department of Soil Sciences Swedish University of Agricultural Sciences Uppsala 66

    Google Scholar 

  • M. E. Jensen J. L. Wright B. J. Pratt (1971) ArticleTitleEstimating soil moisture depletion from climate and soil data Transactions of ASAE 14 IssueID5 954–959

    Google Scholar 

  • Kritz, G. 1983. Physical Conditions in Cereal Seedbeds, A Sampling Investigation in Swedish Spring-sown Fields. Swedish University of Agricultural Sciences, Uppsala. Department of Soil Sciences, Reports from the Division of Soil Management No. 65, 187 pp.

  • S. Machado E. D. Bynum T. L. Archer J. Bordovsky D. T. Rosenow C. Peterson K. Bronson D. M. Nesmith R. J Lascano L. T. Wilson E. Segarra (2002) ArticleTitleSpatial and temporal variability of sorghum grain yield: Influence of soil, water, pests, and diseases relationships Precision Agriculture 3 389–406 Occurrence Handle10.1023/A:1021597023005

    Article  Google Scholar 

  • G. Manning L. G. Fuller R. G. Eilers I. Florinsky (2001) ArticleTitleSoil moisture and nutrient variation within an undulating Manitoba landscape Canadian Journal of Soil Science 81 IssueID4 449–458

    Google Scholar 

  • A. B. McBratney J. J. Gruijter ParticleDe (1992) ArticleTitleA continuum approach to soil classification by modified fuzzy k-means with extragrades Journal of Soil Science 43 159–175

    Google Scholar 

  • J. D. McNeil (1980) Electrical Conductivity of Soil and Rocks. Tech. Note TN-5 Geonics Ltd Mississauga, Ont., Canada 20 pp

    Google Scholar 

  • Minasny, B. and McBratney, A. B. 2002. FuzMe version 3. Australian Centre for Precision Agriculture, The University .of Sydney, NSW, 2006.

  • G. A. Moore J. P. Tyndale-Biscoe (1999) ArticleTitleEstimation of the importance of spatial variable nitrogen application and soil moisture holding capacity to wheat production Precision Agriculture 1 27–38 Occurrence Handle10.1023/A:1009973802295

    Article  Google Scholar 

  • K. Nissen M. Söderström (1999) Mapping in precision farming – from the farmer’s perspective J. Stafford (Eds) Precision agriculture 99, ‘Proceedings of the 2nd European Conference on Precision Agriculture Sheffield Academic Press Sheffield, UK 655–664

    Google Scholar 

  • B. Stenberg A. Jonsson T. Börjesson (2002) NIR-technology for soil analysis with implications for precision agriculture. Near Infrared Spectroscopy: Changing the World with NIR NIR Publications Chichester, UK 279–284

    Google Scholar 

  • F. C. Stevenson J. D. Knight O. Wendroth C. Kessel Particlevan D. R. Nielsen (2001) ArticleTitleA comparison of two methods to predict the landscape-scale variation of crop yield Soil Tillage Research 58 163–181 Occurrence Handle10.1016/S0167-1987(00)00166-5

    Article  Google Scholar 

  • Timlin D., Pachepsky Y., Walthall C. and Loechel S., 2001. The use of a water budget model and yield maps to characterize water availability in a landscape. Soil Tillage Research 58, 219–231.

    Google Scholar 

  • Wright J. L. 1982. New evapotranspiration crop coefficients. Journal of the Irrigation and Drainage Division, ASCE, 108, No. IR2, 57–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delin, S., Berglund, K. Management Zones Classified With Respect to Drought and Waterlogging. Precision Agric 6, 321–340 (2005). https://doi.org/10.1007/s11119-005-2325-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-005-2325-4

Keywords

Navigation