Skip to main content
Log in

Minimax inequalities for set-valued mappings

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper, by using the finite intersection property, we first obtain two types of minimax inequalities for set-valued mappings, which improve and generalize the corresponding results in Ferro (J Optim Theory Appl 60:19–31, 1989) and Li et al. (J Math Anal Appl 281:707–723, 2003). Then, by using the Ky Fan lemma and the Kakutani–Fan–Glicksberg fixed point theorem, we also investigate some Ky Fan minimx inequalities for set-valued mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Chang S.S., Lee G.M., Lee B.S.: Minimax inequalities for vector-valued mappings on W-spaces. J. Math. Anal. Appl. 198, 371–380 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G.Y.: A generalized section theorem and a minimax inequality for a vector-valued mapping. Optimization 22, 745–754 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen G.Y., Huang X.X., Hou S.H.: General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 106, 151–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan K.: A generalization of Tychondff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan K.: A Minimax Inequality and Applications. Inequalities III, pp. 103–111. Academic Press, New York (1972)

    Google Scholar 

  7. Ferro F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferro F.: A minimax theorem for vector-valued functions, part 2. J. Optim. Theory Appl. 68, 35–48 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gong X.H.: The strong minimax theorem and strong saddle points of vector-valued functions. Nonlinear Anal. 68, 2228–2241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ha C.W.: Minimax and fixed point theorems. Math. Ann. 248, 73–77 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ha C.W.: On a minimax inequality of Ky Fan. Proc. Am. Math. Soc. 99, 680–682 (1987)

    Article  MATH  Google Scholar 

  12. Holmes R.B.: Geometric Functional and It’s Applications. Springer, New York (1975)

    Book  Google Scholar 

  13. Jahn J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  14. Li S.J., Chen G.Y., Lee G.M.: Minimax theorems for set-valued mappings. J. Optim. Theory Appl. 106, 183–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li S.J., Chen G.Y., Teo K.L., Yang X.Q.: Generalized minimax inequalities for set-valued mappings. J. Math. Anal. Appl. 281, 707–723 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li X.B., Li S.J., Fang Z.M.: A minimax theorem for vector valued functions in lexicographic order. Nonlinear Anal. 73, 1101–1108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Z.F., Wang S.Y.: A type of minimax inequality for vector-valued mappings. J. Math. Anal. Appl. 227, 68–80 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, X.Q.: On some generalized Ky Fan minimax inequalities. Fixed Point Theory Appl. Article ID 194671 (2009)

  19. Nieuwenhuis J.W.: Some minimax theorems in vector-valued functions. J. Optim. Theory Appl. 40, 463–475 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi D.S., Ling C.: Minimax theorems and cone saddle points of uniformly same-order vector-valued functions. J. Optim. Theory Appl. 84, 575–587 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanaka T.: Some minimax problems of vector-valued functions. J. Optim. Theory Appl. 59, 505–524 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tanaka T.: Two types of minimax theorems for vector-valued functions. J. Optim. Theory Appl. 68, 321–334 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanaka T.: Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions. J. Optim. Theory Appl. 81, 355–377 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng J., Li S.J.: An Ekeland’s variational principle for set-valued mappings with application. J. Comput. Appl. Math. 230, 477–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Li.

Additional information

This research was partially supported by the National Natural Science Foundation of China (Grant number: 11171362) and the Fundamental Research Funds for the Central Universities (Grant number: CDJXS11100016).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, S.J. & Li, M.H. Minimax inequalities for set-valued mappings. Positivity 16, 751–770 (2012). https://doi.org/10.1007/s11117-011-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-011-0144-6

Keywords

Mathematics Subject Classification (2000)

Navigation