Skip to main content
Log in

A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this research, using photonic crystal dielectric rods with a triangular lattice constant, a photonic crystal ring resonator (PhCRR) has been designed in order to be used in optical add/drop filters (ADF).Query Using the proposed hexagonal PhCRR with four different dropping waveguides, new ADFs have been designed and simulated. At a central wavelength of 1550.5 nm, the four proposed ADFs have an average transmission coefficient, a bandwidth, and a quality factor of 100%, 1.2 nm and 1330, respectively. The results obtained from these structures indicate the high flexibility of the proposed PhCRR and ADFs and their applicability in optical communication systems. Using the ADFs, two multi-channel drop filters have been designed in order to be used as optical MUX/DeMUX with a channel spacing of 4 nm which are suitable for wavelength division multiplexing systems. In this study, the plane wave expansion and finite difference time domain methods are, respectively, used, to characterize the photonic band gap and to investigate the optical behavior of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ash, J., Ferguson, S.: The evolution of the telecommunications transport architecture: from megabit/s to terabit/s. Electron. Commun. Eng. J. 13(1), 33–42 (2001)

    Article  Google Scholar 

  2. Angrisani, L.: Optimisation and performance assessment of a digital signal-processing method for jitter measurement in PDH/SDH-based digital telecommunication networks. Measurement 34(4), 313–323 (2003)

    Article  Google Scholar 

  3. Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)

    Article  Google Scholar 

  4. Gunn, S.: Optical fibre wavelength division multiplexing. In: Proceedings, Southern African Conference on Communications and Signal Processing COMSIG 88, 1988. IEEE. (1988)

  5. Song, B.-S., Noda, S., Asano, T.: Photonic devices based on in-plane hetero photonic crystals. Science 300(5625), 1537 (2003)

    Article  Google Scholar 

  6. Sukhoivanov, I.A., Guryev, I.V.: Introduction to Photonic Crystals, in Photonic Crystals, pp. 1–12. Springer, Berlin (2009)

    Google Scholar 

  7. Yablonovitch, E., Gmitter, T.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950 (1989)

    Article  Google Scholar 

  8. Foresi, J., et al.: Photonic-bandgap microcavities in optical wageguides. Nature 390(6656), 143 (1997)

    Article  Google Scholar 

  9. Russell, P.S.J.: Photonic crystal fibers: basics and applications. In: Optical Fiber Telecommunications VA: Components and Subsystems, p. 485 (2010)

  10. Isfahani, B.M., et al.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. JOSA B 26(5), 1097–1102 (2009)

    Article  Google Scholar 

  11. Fan, S., et al.: Channel drop filters in photonic crystals. Opt. Express 3(1), 4–11 (1998)

    Article  Google Scholar 

  12. Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)

    Article  Google Scholar 

  13. Fallahi, V., et al.: Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt. Rev. 24(4), 605–610 (2017)

    Article  Google Scholar 

  14. Zavvari, M.: Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0058

    Google Scholar 

  15. Mehdizadeh, F., et al.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9(2), 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  16. Stomeo, T., et al.: Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications. Microelectron. Eng. 73, 377–382 (2004)

    Article  Google Scholar 

  17. Bendjelloul, R., Bouchemat, T., Bouchemat, M.: An optical channel drop filter based on 2D photonic crystal ring resonator. J. Electromagn. Waves Appl. 30(18), 2402–2410 (2016)

    Article  Google Scholar 

  18. Mahmoud, M.Y., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. Int. J. Light Electron Opt. 125(17), 4718–4721 (2014)

    Article  Google Scholar 

  19. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)

    Article  Google Scholar 

  20. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low-dimens. Syst. Nanostruct. 56, 211–215 (2014)

    Article  Google Scholar 

  21. Seifouri, M., Fallahi, V., Olyaee, S.: Ultra-high-Q optical filter based on photonic crystal ring resonator. Photon Netw. Commun. 35(2), 225–230 (2018)

    Article  Google Scholar 

  22. Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)

    Article  Google Scholar 

  23. Robinson, S., Nakkeeran, R.: Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter. Opt. Eng. 51(11), 114001 (2012)

    Article  Google Scholar 

  24. Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry–Perot resonators. Opt. Commun. 284(5), 1192–1196 (2011)

    Article  Google Scholar 

  25. Andalib, P., Granpayeh, N.: Optical add/drop filter based on dual curved photonic crystal resonator. In: IEEE/LEOS International Conference on Optical MEMs and Nanophotonics 2008. IEEE (2008)

  26. Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)

    Article  Google Scholar 

  27. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124(22), 5377–5380 (2013)

    Article  Google Scholar 

  28. Djavid, M., Abrishamian, M.: Multi-channel drop filters using photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 123(2), 167–170 (2012)

    Article  Google Scholar 

  29. Van, V.: Optical Microring Resonators: Theory, Techniques, and Applications. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Seifouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi, V., Seifouri, M. & Mohammadi, M. A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems. Photon Netw Commun 37, 100–109 (2019). https://doi.org/10.1007/s11107-018-0797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0797-1

Keywords

Navigation