Skip to main content
Log in

Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, photonic crystal ring resonators with hexagonal lattice structure are used to design a four-channel optical demultiplexer. The structure size, the average transfer coefficient, the quality factor, and the channel spacing are equal to 424.5 µm2, 95.8%, 1943, and 2 nm, respectively. The average crosstalk is also computed to be −18.11 dB. In this study, the plane wave expansion (PWE) and finite-difference time-domain (FDTD) methods are used, respectively, to characterize the photonic bandgap and to investigate the optical behavior of the structure. The proposed design can be used in dense wavelength division multiplexing (DWDM) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)

    Article  Google Scholar 

  2. Song, B.S., Noda, S., Asano, T.: Photonic devices based on in-plane hetero photonic crystals. Science 300(5625), 1537 (2003)

    Article  Google Scholar 

  3. Sukhoivanov IA, Guryev IV (2009) Photonic crystals: physics and practical modeling. 152. Springer

  4. Sakoda, K.: Optics of photonic crystals. Opt. Rev. 6(5), 381–392 (1999)

    Article  Google Scholar 

  5. Foresi, J.S., Villeneuve, P.R., Ferrera, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I., Ippen, E.P.: Photonic-bandgap microcavities in optical waveguides. Nature 390(6656), 143–145 (1997)

    Article  ADS  Google Scholar 

  6. Krauss, T.F., Wilson, R., Baets, R., Bogaerts, W., Kristensen, M., Borel, P.I., Frandsen, L.H., Thorhauge, M., Tromborg, B., Lavrinenko, A., De La, R.M.: Photonic integrated circuits using crystal optics (PICCO). In: Proceedings of 11th European Conference on Integrated Optics (ECIO’03), 115–120 (2003)

  7. Mehdizadeh, F., Soroosh., M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectronics (2016)

  8. Xu, H., Huang, X., Wang, X., Zhou, C., Zhong, R.: Multi-channel photonic crystal drop filter with cascaded stubs. IET Optoelectronics (2016)

  9. Li, X., Shen, H., Li, T., Liu, J., Huang, X.: T-shaped polarization beam splitter based on two-dimensional photonic crystal waveguide structures. Opt. Rev. 23(6), 950–954 (2016)

    Article  Google Scholar 

  10. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)

    Article  ADS  Google Scholar 

  11. Almasian, M.R., Abedi, K.: Performance improvement of wavelength division multiplexing based on photonic crystal ring resonator. Optik. Int. J. Light Electron Opt. 126(20), 2612–2615 (2015)

    Article  Google Scholar 

  12. Hsiao, F.-L., C. Lee.: A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals. in optical MEMS and nanophotonics. IEEE/LEOS International Conference on (2009)

  13. Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)

    Article  Google Scholar 

  14. Shinya, A., Mitsugi, S., Kuramochi, E., Notomi, M.: Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate. Opt. Express 14(25), 12394–12400 (2006)

    Article  ADS  Google Scholar 

  15. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015)

    Article  MATH  Google Scholar 

  16. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 125(19), 5701–5704 (2014)

    Article  Google Scholar 

  17. Isfahani, B.M., Tameh, T.A., Granpayeh, N., Javan, A.R.M.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. JOSA B. 26(5), 1097–1102 (2009)

    Article  ADS  Google Scholar 

  18. Hsiao, F.-L., Lee, C.: Novel biosensor based on photonic crystal nano-ring resonator. Procedia Chem. 1(1), 417–420 (2009)

    Article  Google Scholar 

  19. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 127(20), 8706–8709 (2016)

    Article  Google Scholar 

  20. Venkatachalam, K., D.S. Kumar., S. Robinson.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Network Communications. 1–11 (2016)

  21. Liu, C.-Y.: Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers. Phys. Lett. A 375(28), 2754–2758 (2011)

    Article  ADS  Google Scholar 

  22. Yata, M., Fujita, M., Nagatsuma, T.: Photonic-crystal diplexers for terahertz-wave applications. Opt. Express 24(7), 7835–7849 (2016)

    Article  ADS  Google Scholar 

  23. Bouamami, S., Naoum, R.: New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal. Optik. Int. J. Light Electron Opt. 125(23), 7072–7074 (2014)

    Article  Google Scholar 

  24. Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Optik. Int. J. Light Electron Opt. 125(19), 5833–5836 (2014)

    Article  Google Scholar 

  25. Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122(16), 1481–1485 (2011)

    Article  Google Scholar 

  26. Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Banaei, H.A: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. in Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009)

  27. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8(1), 14–22 (2010)

    Article  ADS  Google Scholar 

  28. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Optics Commun. 281(15), 4028–4032 (2008)

    Article  ADS  Google Scholar 

  29. Ghorbanpour, H., Makouei, S.: 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front Optoelectron. 6(2), 224–227 (2013)

    Article  Google Scholar 

  30. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5923–5926 (2013)

    Article  Google Scholar 

  31. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50, 97–101 (2013)

    Article  ADS  Google Scholar 

  32. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)

    Article  MATH  Google Scholar 

  33. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015)

    Article  MATH  Google Scholar 

  34. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45(10), 1063–1075 (2013)

    Article  Google Scholar 

  35. Ung, B., Dupuis, A., Stoeffler, K., Dubois, C., Skorobogatiy, M.: High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. JOSA B 28(4), 917–921 (2011)

    Article  ADS  Google Scholar 

  36. Lu, M.F., Liao, S.M., Huang, Y.T.: Ultracompact photonic crystal polarization beam splitter based on multimode interference. Appl. Opt. 49(4), 724–731 (2010)

    Article  ADS  Google Scholar 

  37. Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Seifouri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi, V., Seifouri, M., Olyaee, S. et al. Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt Rev 24, 605–610 (2017). https://doi.org/10.1007/s10043-017-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0353-8

Keywords

Navigation