Skip to main content
Log in

The Quasibinary ZrCo–ZrNi Phase Diagram

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Physicochemical analysis methods (metallography, X-ray diffraction, differential thermal analysis, and electron microprobe analysis) are used to first study the ZrCo–ZrNi alloys in the temperature range that includes their melting and crystallization. The phase diagram of the system is constructed. The phases based on ZrCo (crystal structure of CsCl type, maximum nickel solubility about 46 at.%) and ZrNi (crystal structure of CrB type, cobalt solubility about 2 at.%) coexist in a range from room to subsolidus temperatures. The phase diagram is of peritectic type with peritectic point coordinates 1240 ± 12°C and ~48 at.% Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. D. Hossain and J. R. Harris, “A study of ZrCo and related ternary phases represented by the general formula Zr50Co50–x Ni x ,” J. Less-Common Met., 37, 35–37 (1974).

    Article  Google Scholar 

  2. C. Lall, M. H. Lorello, and J. R. Harris, “Transformation and deformation studies of some Zr(CoNi) alloys,” Acta Metall., 26, 1631–1641 (1978).

    Article  Google Scholar 

  3. M. Matsuda, K. Hayashi, and K. Nishida, “Microstructure and mechanical properties of Zr–Co–Ni intermetallic compound,” Mater. Sci. Forum, 638–642, 1379–1383 (2010).

    Article  Google Scholar 

  4. E. M. Carvalho and I. R. Harris, “X-ray diffraction studies of structural changes in the system Zr50Co50–x Ni x (0 < x < 50): III,” J. Less-Common Met., 106, 143–152 (1985).

    Article  Google Scholar 

  5. M. Matsuda, T. Nishimoto, K. Matsunaga, et al., “Deformation structure inductile B2 type Zr–Co–Ni alloys with martensitic transformation,” Mater. Sci., 46, No. 12, 4221–4227 (2011).

    Article  Google Scholar 

  6. E. M. Carvalho and J. R. Harris, “Magnetic susceptibility studies of phase transformations in the system Zr50Co50–x Ni x (0 < x < 50): I,” J. Less-Common Met., 106, 117–128 (1985).

    Article  Google Scholar 

  7. E. M. Carvalho and J. R. Harris, “Electrical resistivity studies of phase transformations in the system Zr50Co50–x Ni x (0 < x < 50): II,” J. Less-Common Met., 106, 129–141 (1985).

    Article  Google Scholar 

  8. M. Matsude, K. Hayashi, and M. Nishida, “Ductility enhancement in B2-type Zr–Co–Ni alloys with martensitic transformation,” Mater. Trans., 50, No. 9, 2335–2340 (2009).

    Article  Google Scholar 

  9. M. Matsuda, Y. Iwamoto, Y. Morizono, et al., “Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation,” Intermetallics, 36, 45–50 (2013).

    Article  Google Scholar 

  10. Yu. N. Koval, G. S. Firstov, J. V. Humluk, et al., “B2 Intermetallic compounds of Zr. New class of the shape memory alloys,” J. Phys. IV, 5, C8-1103–C8-1108 (1995).

    Google Scholar 

  11. Yu. N. Koval, “High-temperature shape memory effect in some alloys and compounds,” in: Mater. Sci. Forum Proc. Int. Symp. Shape Memory Materials (Kanazama, Japan, May, 1999), Kanazama, Japan (2000), Vol. 327–328, pp. 271–278.

  12. O. L. Semenova, J.-C. Tedenac, and O. S. Fomichev, “Structural phase transformations in Zr50Co25Ni25 alloy,” Powder Metall. Met. Ceram., 55, No. 5–6, 339–346 (2016).

    Article  Google Scholar 

  13. V. G. Ivanchenko and T. A. Kosorukova, “Phase equilibria in the ZrCo–Zr2Ni–Zr2Co partial system,” Chem. Met. Alloys, 1, 73–75 (2008).

    Google Scholar 

  14. T. A. Kosorukova, G. S. Firstov, Yu. N. Koval, et al., “Phase transformations in Zr50Co50–x Ni x intermetallics (0 < x < 50),” Dop. Akad. Nauk Ukrainy, No. 12, 114–121 (2012).

  15. V. N. Eremenko, E. L. Semenova, L. A. Tretyachenko, and V. M. Petyukh, “Interaction of equiatomic binary compounds in ternary systems formed by group IV transition metals with nickel,” Neorg. Mater., 28, No. 6, 1173–1177 (1992).

    Google Scholar 

  16. H. T. Takeshita, S. Kondo, H. Miyamurab, et al., “Re-examination of Zr7Ni10 single-phase region,” J. Alloys Compd., 376, 268–274 (2004).

    Article  Google Scholar 

  17. F. Delogu, “Atomistic simulation of local rearrangements in Ni50Zr50 metallic glasses subjected to compression cycles,” Intermetallics, 17, 688–695 (2009).

    Article  Google Scholar 

  18. J. Nei, K. Young, S. O. Salley, and K. Y. S. Ng, “Effects of annealing on Zr8Ni19X2 (X = Ni, Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf): structural characteristics,” J. Alloys Compd., 516, 144–152 (2012).

    Article  Google Scholar 

  19. A. Cziráki, Zs. Kasztovsky, I. Gerõcs, et al., “Effect of cobalt on the crystallization of Ni50Zr50 amorphous alloys,” Mater. Sci. Eng. A, 133, 475–478 (1991).

    Article  Google Scholar 

  20. E. E. Novikova, Ye. V. Tatyanin, and V. G. Kurdyumov, “Peculiarities of deformation-induced amorphization in CoZrNi alloys,” Scr. Metall. Mater., 33, No. 6, 851–855 (1995).

    Article  Google Scholar 

  21. V. N. Eremenko, E. L. Semenova, and T. D. Shtepa, “Study of transformations in near-equiatomic Zr–Rh alloys,” in: Thermal Analysis and Phase Equilibria [in Russian], Perm (1983), pp. 109–113.

  22. O. Guo and O. J. Kleppa, “The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and coworkers at the University of Chikago—a review,” J. Alloys Compd., 321, 169–182 (2001).

    Article  Google Scholar 

  23. V. G. Pushin, V. V. Kondratiev, and V. N. Khachin, “Pretransition phenomena and martensitic transformations in titanium nickelide alloys,” Izv. Vuz. Fiz., No. 5, 5–19 (1985).

  24. V. N. Yeremenko, E. L. Semenova, L. A. Tretyachenko, and V. M. Petyukh, “Constitution of the Hf–Ni system up to 50 at.% Ni,” J. Alloys Compd., 191, 117–119 (1993).

    Article  Google Scholar 

  25. P. Nash and C. S. Jayanth, “The Ni−Zr (nickel–zirconium) system,” Bull. Alloy Phase Diagrams, 5, No. 2, 144–148 (1984).

    Article  Google Scholar 

  26. G. S. Firstov, J. Van Humbuck, and Yu. V. Koval, “Martensitic transformation and shape memory effect in ZrCo intermetallic compound along with Ni and Ti additions,” Metallofiz. Noveish. Tekhnol., 23, Special Issue, 21–25 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Semenova.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 3–4 (514), pp. 118–130, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, O.L., Petyukh, V.M. & Fomichev, O.S. The Quasibinary ZrCo–ZrNi Phase Diagram. Powder Metall Met Ceram 56, 210–219 (2017). https://doi.org/10.1007/s11106-017-9888-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9888-2

Keywords

Navigation