Skip to main content

Advertisement

Log in

The Structure and Properties of Calcium Phosphate Ceramics Produced from Monetite and Biogenic Hydroxyapatite

  • REFRACTORY AND CERAMIC MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

It is shown that porous calcium phosphate ceramics can be produced from monetite and biogenic hydroxyapatite, the starting materials being in the ratios 25 : 75, 50 : 50, and 75 : 25 wt.%. It is established that phase transitions and solid-phase reactions take place during sintering to form polyphosphate ceramics consisting of hydroxyapatite (Ca5(PO4)3(OH)), β-pyrophosphate (β-Ca2P2O7), and β-tricalcium phosphate (β-Ca3(PO4)2), in which β-Ca2P2O7 and Ca5(PO4)3(OH) phases are predominant, depending on starting composition. When the biogenic hydroxyapatite content changes from 25 to 75 wt.%, the grain size decreases and the pore size increases. The ceramics have 40 to 42% porosity with predominant open porosity for all compositions. The ceramics show 32–55 MPa strength, which increases with the amount of biogenic hydroxyapatite in starting composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Haberko, M. M. Bucko, J. Brzezinska-Miecznik, et al., “Natural hydroxyapatite—its behavior during heat treatment,” J. Eur. Ceram. Soc., 26, No. 4–5, 537–542 (2006).

    Article  Google Scholar 

  2. C. Faucheux, R. Bareille, F. Rouais, et al., “Biocompatibility testing of a bovine hydroxyapatite ceramic material with the use of osteo-progenitor cells isolated from human bone marrow,” J. Mater. Sci. Mater. Med., 5, 635–639 (1994).

    Article  Google Scholar 

  3. K. S. Vecchio, X. Zhang, J. B. Massie, et al., “Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants,” Acta Biomater., 3, No. 6, 910–918 (2007).

    Article  Google Scholar 

  4. J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, et al., “Scaffolds for bone restoration from cuttlefish,” Bone, 37, No. 6, 850–857 (2005).

    Article  Google Scholar 

  5. U. Ripamonti, J. Crooks, L. Khoali, and L. Roden, “The induction of bone formation by coral-derived calcium carbonate / hydroxyapatite constructs,” Biomaterials, 30, No. 7, 1428–1439 (2009).

    Article  Google Scholar 

  6. P. J. Walsh, F. J. Buchanan, M. Dring, et al., “Low-pressure synthesis and characterization of hydroxyapatite derived from mineral red algae,” Chem. Eng. J., 137, No. 1, 173–179 (2008).

    Article  Google Scholar 

  7. D. S. Seo and J. K. Lee, “Dissolution of human teeth-derived hydroxyapatite,” Ann. Biomed. Eng., 36, No. 1, 132–140 (2008).

    Article  Google Scholar 

  8. F. N. Oktar, “Microstructure and mechanical properties of sintered enamel hydroxyapatite,” Ceram. Int., 33, No. 7, 1309–1314 (2007).

    Article  Google Scholar 

  9. D. S. R. Krishna, A. Siddharthan, S. K. Seshadri, and T. S. S. Kumar, “A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste,” J. Mater. Sci. Mater. Med., 18, 1735–1743 (2007).

    Article  Google Scholar 

  10. G. Gergely, F. Wéber, I. Lukács, et al., “Preparation and characterization of hydroxyapatite from eggshell,” Ceram. Int., 36, No. 2, 803–806 (2010).

    Article  Google Scholar 

  11. R. F. Ellinger, E. B. Nery, and K. L. Lynch, “Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report,” J. Periodont. Restor. Dent., 3, 223–233 (1986).

    Google Scholar 

  12. L. Cheng, F. Ye, R. Yang, et al., “Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula,” Acta Biomater., 6, No. 4, 1569–1574 (2010).

    Article  Google Scholar 

  13. S. Padilla, J. Roman, S. Sanchez-Salcedo, and M. Vallet-Regi, “Hydroxyapatite/SiO2–CaO–P2O5 glass materials: in vitro bioactivity and biocompatibility,” Acta Biomater., 2, No. 3, 331–342 (2006).

    Article  Google Scholar 

  14. A. Yao, F. Ai, X. Liu, et al., “Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature,” Mater. Res. Bull., 45, No. 1, 25–28 (2010).

    Article  Google Scholar 

  15. A. Yu. Malysheva, B. I. Beletskii, and E. B. Vlasova, “Structure and properties of composites for medical applications,” Steklo Keram., No. 2, 28–31 (2001).

    Google Scholar 

  16. V. V. Skorokhod, S. M. Solonin, V. A. Dubok, et al., “Decomposition activation of hydroxyapatite in contact with β-tricalcium phosphate,” Powder Metall. Met. Ceram., 49, No. 5–6, 324–329 (2010).

    Article  Google Scholar 

  17. A. G. Veresov, V. I. Putlyaev, and Yu. D. Tretiakov, “Advances in calcium phosphate materials,” Ros. Khim. Zh., 44, No. 6, Part II, 32–46 (2000).

    Google Scholar 

  18. Jr. L. Mattano, “Strategic approaches to osteoporosis in transplantation,” Pediatr. Transplantation, 8, Suppl. 5, 51–55 (2004).

  19. V. M. Vagabov, I. S. Kulaev, and T. V. Kulakovskaya, High-Molecular Inorganic Polyphosphates: Biochemistry, Cell Biology, Biotechnology [in Russian], Nauchnyi Mir, Moscow (2005), p. 216.

    Google Scholar 

  20. J.-S. Sun, Y.-H. Tsuang, C.-J. Liao, et al., “The effect of sintered β-dicalcium pyrophosphate particle size on newborn wistar rat osteoblasts,” Artif. Organs, 23, No. 4, 331–338 (1999).

    Article  Google Scholar 

  21. O. E. Sych, N. D. Pinchuk, L. A. Ivanchenko, and O. R. Parkhomei, Calcium Phosphate Composite Material [in Ukrainian], Ukrainian Utility Model Patent 43042, IPC (2009) A61K 33/42, A61P 19/00, Inst. Probl. Materialoved. NANU (applicant and patent holder), 2009 02943, appl. March 2009, publ. July (2009), Bulletin No. 14, p. 3.

  22. T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction, and osseointegration,” Eur. Spine J., 10, No. 2, 96–101 (2001).

    Google Scholar 

  23. C. H. Haemerle and T. Karring,” Guided bone regeneration at oral implant sites,” Periodontol., 17, 151–175 (2000).

    Article  Google Scholar 

  24. V. V. Smirnov, “Porous cements for filling bone tissue defects,” Materialovedenie, No. 8, 16–19 (2009).

  25. F. Tamimi, J. Torres, D. Bassett, et al., “Resorption of monetite granules in alveolar bone defects in human patients,” Biomaterials, 31, No. 10, 2762–2769 (2010).

    Article  Google Scholar 

  26. T. Kanazawa, Inorganic Phosphate Materials, Elsevier, Amsterdam (1989).

    Google Scholar 

  27. T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, et al., “Composite ceramics containing a bioresorptive phase,” Steklo Keram., No. 3, 31–35 (2007).

  28. E. P. Podrushnyak, L. A. Ivanchenko, V. L. Ivanchenko, and N. D. Pinchuk, Hydroxyapatite and Method for Its Production (Options) [in Ukrainian], Ukrainian Patent 61938, IPC A61K35/32, A61K33/00, A61K6/02, A61P19/00, No. 99095233, appl. September 1999, publ. December (2003), Bulletin No. 12, p. 7.

  29. T. V. Safronova, V. I. Putlyaev, A. V. Kuznetsov, et al., “Properties of calcium phosphate powders synthesized from calcium acetate and sodium hydrogen phosphate,” Steklo Keram., No. 4, 30–34 (2011).

  30. W. I. Abdel-Fattah and M. M. Selim, “Thermal behavior and structural variations of both chemically precipitated and biological hydroxyapatites,” Ceram. Acta, 4–5, 65–76 (1991).

    Google Scholar 

  31. A. L. Giraldo-Betancur, D. G. Espinosa-Arbelaez, A. del Real-López, et al., “Comparison of physicochemical properties of bio- and commercial hydroxyapatite,” Curr. Appl. Phys., 13, No. 7, 1383–1390 (2013).

    Article  Google Scholar 

  32. S. A. Goldstein, “The mechanical properties of trabecular bone: dependence on anatomic location and function,” J. Biomech., 20, No. 11–12, 1055–1061 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Sych.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 53, Nos. 7–8 (498), pp. 58–68, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, E.E., Pinchuk, N.D., Tovstonog, A.B. et al. The Structure and Properties of Calcium Phosphate Ceramics Produced from Monetite and Biogenic Hydroxyapatite. Powder Metall Met Ceram 53, 423–430 (2014). https://doi.org/10.1007/s11106-014-9634-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-014-9634-y

Keywords

Navigation