Skip to main content
Log in

Ceramics Based on Powders Synthesized from Ammonium Hydrogen Phosphate, Calcium Acetate, and Magnesium Acetate

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A ceramic the phase composition of which included tricalcium phosphate, calcium magnesium orthophosphate, and magnesium pyrophosphate was prepared from nanosized powders synthesized via chemical deposition from 1 M aqueous solutions of ammonium hydrogen phosphate and calcium and/or magnesium acetates. The XRD data showed that the phase composition of a powder synthesized from calcium acetate involved calcium hydroxyapatite Ca5(PO4)3(OH), octacalcium phosphate Ca8H2(PO4)6⋅5H2O, and brushite CaHPO4⋅2H2O. The phase composition of a powder synthesized from magnesium acetate included struvite MgNH4PO4⋅6H2O. The phase composition of a powder synthesized from a solution containing calcium and magnesium acetates at a Ca : Mg ratio of 9 : 1 included hydroxyapatite Ca5(PO4)3(OH), vitlockite Ca18Mg2H2(PO4)14, and struvite MgNH4PO4⋅6H2O. The ceramic materials containing bioresorbable and biocompatible phases of calcium and/or magnesium phosphates can be used to obtain bone implants for the treatment of bone tissue defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Felix, R. and Fleisch, H., The role of matrix vesicles in calcification, Calcif. Tissue Res., 1976, vol. 21, no. 1, pp. 344–348. https://doi.org/10.1007/BF02546474

    Article  PubMed  Google Scholar 

  2. Bab, I.A., Muhlrad, A., and Sela, J., Ultrastructural and biochemical study of extracellular matrix vesicles in normal alveolar bone of rats, Cell Tissue Res., 1979, vol. 202, no. 1, pp. 1–7. https://doi.org/10.1007/BF00239215

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, H., Chabok, R., Guan, X., Chawla, A., Li, Y., Khademhosseini, A., and Jang, H.L., Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells, Acta Biomater., 2018, vol. 69, pp. 342–351. https://doi.org/10.1016/j.actbio.2018.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, H.D., Jang, H.L., Ahn, H.Y., Lee, H.K., Park, J., Lee, E.S., and Hwang, N.S., Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration, Biomaterials, 2017, vol. 112, pp. 31–43. https://doi.org/10.1016/j.biomaterials.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  5. Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Sandri, M., and Sprio, S., Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behavior, J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 1, pp. 239–247. https://doi.org/10.1007/s10856-006-0032-y

    Article  CAS  Google Scholar 

  6. Cacciotti, I., Bianco, A., Lombardi, M., and Montanaro, L., Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behavior, J. Eur. Ceram. Soc., 2009, vol. 29, no. 14, pp. 2969–2978. https://doi.org/10.1016/j.jeurceramsoc.2009.04.038

    Article  CAS  Google Scholar 

  7. Goldberg, M.A., Smirnov, V.V., Kasimova, M.R., Shvorneva, L.I., Kutsev, S.V., Antonova, O.S., and Barinov, S.M., Ceramics in the system calcium phosphates–magnesium phosphates with (Ca + Mg)/P ≈ 2, Dokl. Chem., 2015, vol. 461, no. 1, pp. 81–85. https://doi.org/10.1134/S0012500815030015

    Article  CAS  Google Scholar 

  8. Moseke, C., Saratsis, V., and Gbureck, U., Injectability and mechanical properties of magnesium phosphate cements, J. Mater. Sci.: Mater. Med., 2011, vol. 22, no. 12, pp. 2591–2598. https://doi.org/10.1007/s10856-011-4442-0

    Article  CAS  Google Scholar 

  9. Nabiyouni, M., Brückner, T., Zhou, H., Gbureck, U., and Bhaduri, S.B., Magnesium-based bioceramics in orthopedic applications, Acta Biomater., 2018, vol. 66, pp. 23–43. https://doi.org/10.1016/j.actbio.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  10. Boskey, A.L. and Posner, A.S., Effect of magnesium on lipid-induced calcification: An in vitro model for bone mineralization, Calcif. Tissue Int., 1980, vol. 32, no. 1, pp. 139–143. https://doi.org/10.1007/BF02408533

    Article  CAS  PubMed  Google Scholar 

  11. Tamimi, F., Le Nihouannen, D., Bassett, D.C., Ibasco, S., Gbureck, U., Knowles, J., and Barralet, J.E., Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions, Acta Biomater., 2011, vol. 7, no. 6, pp. 2678–2685. https://doi.org/10.1016/j.actbio.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  12. Sikder, P., Ren, Y., and Bhaduri, S.B., Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review, Acta Biomater., 2020, vol. 111, pp. 29–53. https://doi.org/10.1016/j.actbio.2020.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Ostrowski, N., Roy, A., and Kumta, P.N., Magnesium phosphate cement systems for hard tissue applications: A review, ACS Biomater. Sci. Eng., 2016, vol. 2, no. 7, pp. 1067–1083. https://doi.org/10.1021/acsbiomaterials.6b00056

    Article  CAS  PubMed  Google Scholar 

  14. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139. https://doi.org/10.1007/s10717-009-9130-x

  15. Safronova, T.V., Kazakova, G.K., Yevdokimov, P.V., Shatalova, T.B., Knotko, A.V., Korotkova, A.V., and Putlyayev, V.I., Ceramics based on calcium phosphate powder synthesized from calcium saccharate and ammonium hydrophosphate, Inorg. Mater.: Appl. Res., 2016, vol. 7, pp. 635–640. https://doi.org/10.1134/S2075113316040316

    Article  Google Scholar 

  16. Safronova, T.V., Putlyaev, V.I., Avramenko, O.A., Shekhirev, M.A., and Veresov, A.G., Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics, Glass Ceram., 2011, vol. 68, nos. 1–2, pp. 28–32. https://doi.org/10.1007/s10717-011-9315-y

  17. Hughes, J.M., Jolloff, B.L., and Rakovan, J., The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite, Am. Mineral., 2008, vol. 93, pp. 1300–1305.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with use of equipment acquired at the expense of the Program of Development of Moscow University.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project 19-38-90274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kazakova.

Additional information

Translated by A. Tulyabaew

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakova, G.K., Safronova, T.V. & Shatalova, T.B. Ceramics Based on Powders Synthesized from Ammonium Hydrogen Phosphate, Calcium Acetate, and Magnesium Acetate. Inorg. Mater. Appl. Res. 13, 75–82 (2022). https://doi.org/10.1134/S2075113322010154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322010154

Keywords:

Navigation