Skip to main content
Log in

Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) pathway is emerging as a major signaling pathway in plants. To understand the function of CIPK, the gene named BrCIPK1 from Brassica rapa were introduced into rice. Characterization of BrCIPK1 gene showed a 1982 bp, containing 1509 bp coding region and 502 amino acids. Green fluorescent protein (GFP)-tagged BrCIPK1 was observed exclusively in the cytoplasmic and peripheral regions in the plant cell. Gene expression showed that its messenger RNA (mRNA) transcription in B. rapa was differentially accumulated in the presence of cold, salinity, and drought, indicating its biological roles in multiple stress response pathways in plants. Furthermore, Ubi-1::BrCIPK1 rice lines showed significantly higher biomass, water content, and proline and free sugar content relative to those in the wild-type Gopum. The BrCIPK1 interacted with rice calcineurin B-like protein 1 and 5 (OsCBL1, OsCBL5), suggesting that it is activated by Ca2+-bound CBLs in the cytosol by calcium spiking and regulates its downstream target proteins in these regions to increase abiotic stress tolerance. The results imply that BrCIPK1 gene may be involved in stress adaptations through the activation of pyrroline-5-carboxylate synthase in the proline biosynthetic pathway. In this paper, a hypothetical mechanism of elevated tolerance to cold, drought, and salinity is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdula SE et al (2013) Development and identification of transgenic rice lines with abiotic stress tolerance by using a full-length overexpressor gene hunting system. Plant Breed Biotechnol 1:33–48

    Article  Google Scholar 

  • Albrecht V et al (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    Article  CAS  Google Scholar 

  • Chen X, Gu Z, Liu F, Ma B, Zhang H (2011a) Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses. Rice Sci 18:1–9

    Article  Google Scholar 

  • Chen X et al (2011b) Identification and characterization of putative CIPK genes in maize. J Genet Genomics 38:77–87

    Article  CAS  PubMed  Google Scholar 

  • Cho YG et al (2007) Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci 47:2403–2417

    Article  Google Scholar 

  • Choi IS, Kim YG, Cho YC, Hong HC, Baek MK (2007) A medium-maturing, multi-disease resistant and good eating-quality rice variety ‘Gopum’. Kor J Plant Breed Sci 39:586–587

    Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong D, Gong Z, Guo Y, Zhu JK (2002a) Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. Plant Physiol 129:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong D, Guo Y, Jagendorf AT, Zhu JK (2002b) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabak EM et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci U S A 89:9354–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • IRRI (2002) Standard evaluation system for rice. IRRI, Los Baños, Laguna

    Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto N, Nagai J, Kinoshita T, Ueno K, Ohashi Y, Mitsuhara I (2013) DNA elements reducing transcriptional gene silencing revealed by a novel screening strategy. PloS One 8:e54670. doi:10.1371/journal.pone.0054670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kisor PBK et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stresses tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Abdula SE, Jee MG, Jang DW, Cho YG (2011) High-efficiency and rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J Plant Biotechnol 38:251–257

    Article  Google Scholar 

  • Lee HJ, Jee MG, Kim JK, Nogoy FMC, Niño MC, Yu DA, Kim MS, Sun MM, Kang KK, Nou IS, Cho YG (2014) Modification of starch composition using RNAi targeting soluble starch synthase I in Japonica Rice. Plant Breed Biotech 2(3):301–312

    Article  Google Scholar 

  • Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca(2) + signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A 103:12625–12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009) Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress. Prog Nat Sci 19:667–676

    Article  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  CAS  PubMed  Google Scholar 

  • Manigbas NL et al (2011) Enhanced tolerance of transgenic rice overexpressing Arabidopsis thaliana nucleoside diphosphate kinase (AtNDPK2) against various environmental stresses. Philipp Agric Scientist 94:29–37

  • Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    Article  CAS  PubMed  Google Scholar 

  • Nozawa A, Koizumi N, Sano H (2001) An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. Plant Cell Physiol 42:976–981

  • Pandey GK (2008) Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol Mol Biol Plants 14:51–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK et al (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim BG, le Li G, Luan S (2008) Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant 1:238–248

  • Park IK, Oh CS, Kim DM, Yeo SM, Ahn SN (2013) QTL mapping of cold tolerance at the seedling stage using introgression lines derived from an intersubspecific cross in rice. Plant Breed Biotech 1:1–8

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Pro Natl Acad Sci U S A 97:6896–6901

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Annals Bot 79:3–12

    Article  CAS  Google Scholar 

  • Sun MM, Abdula SE, Lee HJ, Cho YC, Han LZ, Koh HJ, Cho YG (2011) Molecular aspect of good eating quality formation in Japonica rice. PLoS One 6:e18385. doi:10.1371/journal.pone.0018385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi A, Kikui S, Matsumoto H (2004) Differential effects of aluminium on osmotic potential and sugar accumulation in the root cells of Al-resistant and Al-sensitive wheat. Physiol Plant 120:106–112

    Article  CAS  PubMed  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    CAS  PubMed  Google Scholar 

  • Van Rensburg L, Kruger GHJ, Kruger H (1993) Proline accumulation as drought tolerance selection criterion: its relationship to membrane integrity and chloroplast ultra structure in Nicotiana tabacum L. J Plant Physiol 141:188–194

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W (2002) Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci U S A 99:10870–10875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassenegger M (2002) Gene silencing. Int Revi Cyol 219:61–113

    Article  CAS  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Xia X, Yin W, Zhang H (2007) Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52:101–110

    Article  CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 193:41–48

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Chungbuk National University in 2013, Golden Seed Project, Ministry of Agriculture, Food and Rural Affairs (MAFRA), and the National Research Foundation (NRF) programs (2014R1A2A1A11052547), the Korean Ministry of Science, ICT and Future Planning, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gu Cho.

Additional information

Sailila E. Abdula and Hye-Jung Lee contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Schematic diagram of the binary Ti plasmid pSB11 containing the CBL interacting protein kinase 1 full length cDNA from Chinese cabbage. P35S, CaMV35S promoter; pUbi-1, maize Ubiquitin-1 promoter; Tg7 and Tnos, polyadenylation signals from gene 7 and nopaline synthase (nos) gene in the T-DNA, respectively; HPT, hygromycin phosphotransferase gene; LB, left border; RB, right border (gif 8 kb)

High Resolution Image (tiff 1678 kb)

Fig. S2

Genomic and expression of Ubi-1::BrCIPK1 rice lines and wild type Gopum. (a) PCR Confirmation of BrCIPK1 insert in rice using BrCIPK1 and HPT primers in 1 % agarose gel. WT, Gopum; P, control plasmid DNA. (b) Relative mRNA expression of BrCIPK1 in transgenic rice and wild type (gif 44 kb)

High Resolution Image (tiff 5393 kb)

Fig. S3

Respond of Ubi-1::BrCIPK1 rice lines under stress condition. Phenotype of BrCIPK1 relative to susceptible check and wild type. (a) Cold stress at 10 °C. T (tolerant variety), Seorak; S (susceptible variety), Gaya. (b) Salinity stress with 130 mM NaCl. T (tolerant variety), Hwayeong; MT (moderate tolerant variety), Junam; S (susceptible variety), Dongjin. (c) Drought stress with 20 % PEG6000. T (tolerant variety), Sangnambat; S (susceptible variety), Gaya; WT (wild type), Gopum (gif 305 kb)

High Resolution Image (tiff 9061 kb)

Table S1

(doc 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdula, S.E., Lee, HJ., Ryu, H. et al. Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice. Plant Mol Biol Rep 34, 501–511 (2016). https://doi.org/10.1007/s11105-015-0939-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0939-x

Keywords

Navigation