Skip to main content
Log in

The Bowman–Birk Trypsin Inhibitor IBP1 Interacts with and Prevents Degradation of IDEF1 in Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

To acquire slightly soluble iron from the rhizosphere, plants transcriptionally induce genes involved in iron acquisition in response to low iron availability. The transcription factor IDEF1 plays an important role in the regulation of this response in graminaceous plants. By yeast two-hybrid screening, we identified IDEF1-binding proteins, designated IBP1.1 and IBP1.2, as two homologous Bowman–Birk trypsin inhibitors. Interaction between IDEF1 and IBP1.1 was also confirmed by pull-down assay. IBP1.1 and IBP1.2 expression showed induction in response to iron deficiency and IDEF1 dependence. IBP1.1 localized to the nucleus and the cytoplasm when transiently expressed in onion epidermal cells. Transgenic rice plants overexpressing IBP1.1 showed enhanced expression of the Fe(II)-nicotianamine transporter gene OsYSL2. IDEF1 protein is degraded in a 26S proteasome-dependent manner and this degradation was prevented by IBP1.1. These results suggest that induced expression of IBP1.1 under Fe-deficient conditions contributes to the IDEF1-mediated iron deficiency response by preventing the degradation of IDEF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 43:32395–32402

    Article  Google Scholar 

  • Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45:260–261

    Article  CAS  PubMed  Google Scholar 

  • Bowman DE (1946) Differentiation of soybean anti-tryptic factors. Proc Soc Exp Biol Med 63:547–550

    Article  CAS  PubMed  Google Scholar 

  • Chen YW, Huang SC, Lin-Shiau SY, Lin JK (2005) Bowman–Birk inhibitor abates proteasome function and suppresses the proliferation of MCF7 breast cancer cells through accumulation of MAP kinase phosphatase-1. Carcinogenesis 26:1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Mao S, Xie Y, Cao Z, Zhang Y, Liu J, Chen Z, Qu L, Gu H (2006) Expression and inhibitory activity analysis of a 25-kD Bowman–Birk protease inhibitor in rice. Chin Sci Bull 51:54–62

    Article  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix–loop–helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe 1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Article  CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Hayashi N, Matsushita A, Liu XQ, Nakayama A, Sugano S, Jiang CJ, Takatsuji H (2013) Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein–protein interaction. Proc Natl Acad Sci 110:9577–9582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Li J, Xu Y, Han Y, Bai Y, Zhou G, Lou Y, Xu Z, Chong K (2007) RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signaling in rice. Plant Cell Environ 30:690–699

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 63:131–152

    Article  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36:780–793

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The novel transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci 104:19150–19155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Nishizawa NK (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa NK (2010) Dual regulation of iron deficiency response mediated by the transcription factor IDEF1. Plant Signal Behav 5:157–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:27–92

    Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  CAS  PubMed  Google Scholar 

  • Lingam P, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23:1815–1829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Maurer F, Müller S, Bauer P (2011) Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol Biochem 49:530–536

    Article  CAS  PubMed  Google Scholar 

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori S, Nishizawa NK (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol 28:1081–1092

    CAS  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J 46:563–572

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Kim JA, Kim HW, Kim YS, Song HK (2004) Crystal structure of the Bowman-Birk inhibitor from barley seeds in ternary complex with porcine trypsin. J Mol Biol 343:173–186

    Article  CAS  PubMed  Google Scholar 

  • Qu LJ, Chen J, Liu M, Pan N, Okamoto H, Lin Z, Li C, Li D, Wang J, Zhu G, Zhao X, Chen X, Gu H, Chen Z (2003) Molecular cloning and functional analysis of a novel type of Bowman–Birk inhibitor gene family in rice. Plant Physiol 33:560–570

    Article  Google Scholar 

  • Rakwal R, Kumar Agrawal G, Jwa NS (2001) Characterization of a rice (Oryza sativa L.) Bowman–Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene 263:189–198

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores. In-vitro biosynthesis of 2'-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Google Scholar 

  • Sivitz A, Grinvalds C, Barberon M, Curie C, Vert G (2011) Proteasome-mediated turnover of the transcriptional activator FIT is required for plant Fe-deficiency responses. Plant J 66:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Article  CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang N, Cui Y, Liu Y, Fan H, Du J, Huang Z, Yuan Y, Wu H, Ling HQ (2013) Requirement and functional redundancy of IB subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant 6:503–513

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Shen H, Zhang L, Zhang Y, Guo X, Wang P, Duan P, Ji C, Zhong L, Zhang F, Zuo Y (2013a) Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteomics 78:447–460

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen H, Zhang F, Nishizawa NK, Zuo Y (2013b) Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell Environ 36:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Li Y, Xu Y, Zhang WH (2013) A receptor-like protein RMC is involved in regulation of iron acquisition in rice. J Exp Bot 64:5009–5020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J 61:804–815

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix–loop–helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hiroshi Takatsuji, Dr. Haruhiko Inoue and Dr. Chang-Jie Jiang of the National Institute of Agrobiological Sciences for providing the facilities for the pull-down and protoplast transfection experiments, as well as for valuable discussion and help. We thank Dr. Hiroaki Ichikawa of the National Institute of Agrobiological Sciences for providing the seeds of FOX lines (K33309), Prof. Tsuyoshi Nakagawa of Shimane University for providing the gateway vectors pGWB541 and pGWB542, and Dr. Haruhiko Inoue for providing the gateway vectors, modified pSAT4-Pubi-ADH-HA-NRluc and pSAT4-Pubi-ADH-Myc-CRluc. We also thank Dr. Tomoko Nozoye and Dr. Takeshi Senoura for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Nakanishi Itai, R., Yamakawa, T. et al. The Bowman–Birk Trypsin Inhibitor IBP1 Interacts with and Prevents Degradation of IDEF1 in Rice. Plant Mol Biol Rep 32, 841–851 (2014). https://doi.org/10.1007/s11105-013-0695-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0695-8

Keywords

Navigation